The absence of remainders in the Wiener-Ikehara theorem

Jasson Vindas
jasson.vindas@UGent.be

Department of Mathematics
Ghent University

MicroLocal and Time-Frequency Analysis 2018
Conference in honor of Luigi Rodino
on the occasion of his 70th Birthday

Torino, July 5, 2018
The Wiener-Ikehara theorem is a landmark in 20th century analysis. It states,

Theorem (Wiener-Ikehara)

Let S be a non-decreasing function and suppose that

$$G(s) := \int_1^{\infty} S(x)x^{-s-1}dx \text{ converges for } \Re e s > 1$$

and that there exists A such that $G(s) - A/(s-1)$ admits a continuous extension to $\Re e s \geq 1$, then

$$S(x) = Ax + o(x).$$ \hspace{1cm} (1)

We discuss here whether it is possible to improve the remainder in (1) under an analytic continuation hypothesis.

We will give a negative answer to a conjecture of M. Müger.

The talk is based on collaborative work with Gregory Debruyne.
The Wiener-Ikehara theorem is a landmark in 20th century analysis. It states,

Theorem (Wiener-Ikehara)

Let S be a non-decreasing function and suppose that

\[
G(s) := \int_1^\infty S(x)x^{-s-1}dx \text{ converges for } \Re s > 1
\]

and that there exists A such that $G(s) - A/(s - 1)$ admits a continuous extension to $\Re s \geq 1$, then

\[
S(x) = Ax + o(x).
\]

(1)

We discuss here whether it is possible to improve the remainder in (1) under an analytic continuation hypothesis.

We will give a negative answer to a conjecture of M. Müger.

The talk is based on collaborative work with Gregory Debruyne
The Wiener-Ikehara theorem is a landmark in 20th century analysis. It states,

Theorem (Wiener-Ikehara)

Let S be a non-decreasing function and suppose that

$$G(s) := \int_1^\infty S(x)x^{-s-1}dx$$

converges for $\Re s > 1$ and that there exists A such that $G(s) - A/(s-1)$ admits a continuous extension to $\Re s \geq 1$, then

$$S(x) = Ax + o(x). \tag{1}$$

We discuss here whether it is possible to improve the remainder in (1) under an analytic continuation hypothesis.

We will give a negative answer to a conjecture of M. Müger.

The talk is based on collaborative work with Gregory Debruyne.
Remainders in the Wiener-Ikehara theorem

S non-decreasing with Mellin transform $G(s)$ on $\Re s > 1$.

If one wishes to attain a stronger remainder than $o(x)$, i.e.,

$$S(x) = Ax + O(x\rho(x)) \quad \text{with} \quad \rho(x) = o(1),$$

it is natural to strengthen the regularity assumptions on

$$G(s) - \frac{A}{s-1}. \quad (2)$$

Our goal: to study the following hypothesis:

(2) has analytic continuation to $\Re s > \alpha$, where $0 < \alpha < 1$.

Well-known: remainders can be obtained if bounds on (2) hold.

Theorem (Simplest example)

If $G(s) - \frac{A}{s-1} \ll (1 + |\Im s|)^{N-1}$ on the strip $\alpha < \Re s < 2$,

$$S(x) = Ax + O(x^{\frac{N+1+\alpha}{N+2}}).$$
Remainders in the Wiener-Ikehara theorem

S non-decreasing with Mellin transform $G(s)$ on $\Re s > 1$.

If one wishes to attain a stronger remainder than $o(x)$, i.e.,

$$S(x) = Ax + O(x\rho(x)) \quad \text{with} \quad \rho(x) = o(1),$$

it is natural to strengthen the regularity assumptions on

$$G(s) - \frac{A}{s - 1}.$$ \hspace{1cm} (2)

Our goal: to study the following hypothesis:

(2) has analytic continuation to $\Re s > \alpha$, where $0 < \alpha < 1$.

Well-known: remainders can be obtained if bounds on (2) hold.

<table>
<thead>
<tr>
<th>Theorem (Simplest example)</th>
</tr>
</thead>
</table>

If $G(s) - \frac{A}{s - 1} \ll (1 + |\Im m s|)^{N-1}$ on the strip $\alpha < \Re s < 2$,

$$S(x) = Ax + O(x^{\frac{N+1+\alpha}{N+2}}).$$
Remainders in the Wiener-Ikehara theorem

S non-decreasing with Mellin transform $G(s)$ on $\Re s > 1$.

If one wishes to attain a stronger remainder than $o(x)$, i.e.,

$$S(x) = Ax + O(x\rho(x)) \quad \text{with} \quad \rho(x) = o(1),$$

it is natural to strengthen the regularity assumptions on

$$G(s) - \frac{A}{s-1}. \quad (2)$$

Our goal: to study the following hypothesis:

$$\text{(2) has analytic continuation to } \Re s > \alpha, \text{ where } 0 < \alpha < 1.$$

Well-known: remainders can be obtained if bounds on (2) hold.

Theorem (Simplest example)

If $G(s) - \frac{A}{s-1} \ll (1 + |\Im s|)^{N-1}$ on the strip $\alpha < \Re s < 2$,

$$S(x) = Ax + O(x^{\frac{N+1+\alpha}{N+2}}).$$
Remainders in the Wiener-Ikehara theorem

S non-decreasing with Mellin transform $G(s)$ on $\Re e s > 1$.

If one wishes to attain a stronger remainder than $o(x)$, i.e.,

$$S(x) = Ax + O(x \rho(x)) \quad \text{with} \quad \rho(x) = o(1),$$

it is natural to strengthen the regularity assumptions on

$$G(s) - \frac{A}{s - 1}. \quad (2)$$

Our goal: to study the following hypothesis:

(2) has analytic continuation to $\Re e s > \alpha$, where $0 < \alpha < 1$.

Well-known: remainders can be obtained if bounds on (2) hold.

Theorem (Simplest example)

If $G(s) - \frac{A}{s - 1} \ll (1 + |\Im m s|)^{N-1}$ on the strip $\alpha < \Re e s < 2$,

$$S(x) = Ax + O(x^{\frac{N+1+\alpha}{N+2}}).$$
M. Müger raised the question of whether it is still possible to obtain error terms without the bounds on the analytic continuation of $G(s) - a/(s - 1)$. He actually conjectured one could get the error term

Conjecture (Müger, 2017)

Let $0 < \alpha < 1$ and $a > 0$. If $G(s) - \frac{a}{s - 1}$ has analytic continuation to $\Re s > \alpha$, then

$$S(x) = ax + O_\varepsilon(x^{\frac{\alpha + 2}{3} + \varepsilon}), \quad \forall \varepsilon > 0.$$

We show in this talk that the latter conjecture is false; in fact, we report the following more general result:

Negative general answer

No reasonably good remainder can be expected in the Wiener-Ikehara theorem, with solely the analyticity on $\Re s > \alpha$.

J. Vindas

Wiener-Ikehara theorem
M. Müger raised the question of whether it is still possible to obtain error terms without the bounds on the analytic continuation of $G(s) - a/(s - 1)$. He actually conjectured one could get the error term

Conjecture (Müger, 2017)

Let $0 < \alpha < 1$ and $a > 0$. If $G(s) - a \frac{s}{s - 1}$ has analytic continuation to $\Re s > \alpha$, then

$$S(x) = ax + O_\varepsilon(x^{\frac{\alpha+2}{3}+\varepsilon}), \quad \forall \varepsilon > 0.$$

We show in this talk that the latter conjecture is false; in fact, we report the following more general result:

Negative general answer

No reasonably good remainder can be expected in the Wiener-Ikehara theorem, with solely the analyticity on $\Re s > \alpha$.

Wiener-Ikehara theorem
M. Müger raised the question of whether it is still possible to obtain error terms without the bounds on the analytic continuation of $G(s) - a/(s - 1)$. He actually conjectured one could get the error term

Conjecture (Müger, 2017)

Let $0 < \alpha < 1$ and $a > 0$. If $G(s) - \frac{a}{s - 1}$ has analytic continuation to $\Re e\ s > \alpha$, then

$$S(x) = ax + O_{\varepsilon}(x^{\frac{\alpha+2}{3}+\varepsilon}), \quad \forall \varepsilon > 0.$$

We show in this talk that the latter conjecture is false; in fact, we report the following more general result:

Negative general answer

No reasonably good remainder can be expected in the Wiener-Ikehara theorem, with solely the analyticity on $\Re e\ s > \alpha$.

J. Vindas

Wiener-Ikehara theorem
M. Müger raised the question of whether it is still possible to obtain error terms without the bounds on the analytic continuation of $G(s) - a/(s - 1)$. He actually conjectured one could get the error term

Conjecture (Müger, 2017)

Let $0 < \alpha < 1$ and $a > 0$. If $G(s) - \frac{a}{s - 1}$ has analytic continuation to $\Re s > \alpha$, then

$$S(x) = ax + O_\varepsilon(x^{\frac{\alpha + 2}{3} + \varepsilon}), \forall \varepsilon > 0.$$

We show in this talk that the latter conjecture is false; in fact, we report the following more general result:

Negative general answer

No reasonably good remainder can be expected in the Wiener-Ikehara theorem, with solely the analyticity on $\Re s > \alpha$.

J. Vindas

Wiener-Ikehara theorem
Theorem (Debruyne and V., 2018)

Let ρ be a positive function, $A > 0$, and $0 < \alpha < 1$. Suppose that every non-decreasing function S on $[1, \infty)$, whose Mellin transform $G(s)$ is such that

$$G(s) - \frac{A}{s - 1}$$

admits an analytic extension to $\Re s > \alpha$, satisfies

$$S(x) = Ax + O(x\rho(x)).$$

Then, one must necessarily have

$$\rho(x) = \Omega(1).$$

(the latter means $\rho(x) \nrightarrow 0$.)

The rest of the talk is devoted to outline the proof of this result.
We will use functional analysis and need to make a vector space out of our problem.

- As the "Tauberian theorem hypothesis" holds for some $A > 0$, it holds $\forall A > 0$.

Set $T(x) = S(x) - Ax$.

- The Mellin transform $G_T(s) := \int_1^\infty x^{-1-s} T(x)dx$ has analytic continuation to $\Re s > \alpha$.
- If T is absolutely continuous, $T'(x)$ is bounded from below.
- The asymptotic formula for S becomes $T(x) \ll x\rho(x)$.

We shall use less to show our original result, i.e., it is contained in:

Theorem

If $T(x) = O(x\rho(x))$ for any T with $T' \in L^\infty(1, \infty)$ such that $G_T(s)$ has analytic continuation to $\Re s > \alpha$, then

$$\rho(x) = \Omega(1).$$
First reduction

We will use functional analysis and need to make a vector space out of our problem.

- As the "Tauberian theorem hypothesis" holds for some $A > 0$, it holds $\forall A > 0$.

Set $T(x) = S(x) - Ax$.

- The Mellin transform $G_T(s) := \int_1^\infty x^{-1-s} T(x)dx$ has analytic continuation to $\Re s > \alpha$.
- If T is absolutely continuous, $T'(x)$ is bounded from below.
- The asymptotic formula for S becomes $T(x) \ll x\rho(x)$.

We shall use less to show our original result, i.e., it is contained in:

Theorem

If $T(x) = O(x\rho(x))$ for any T with $T' \in L^\infty(1, \infty)$ such that $G_T(s)$ has analytic continuation to $\Re s > \alpha$, then

$\rho(x) = \Omega(1)$.

J. Vindas

Wiener-Ikehara theorem
First reduction

We will use functional analysis and need to make a vector space out of our problem.

- As the "Tauberian theorem hypothesis" holds for some $A > 0$, it holds $\forall A > 0$.

Set $T(x) = S(x) - Ax$.

- The Mellin transform $G_T(s) := \int_1^\infty x^{-1-s} T(x)dx$ has analytic continuation to $\Re e s > \alpha$.
- If T is absolutely continuous, $T'(x)$ is bounded from below.
- The asymptotic formula for S becomes $T(x) \ll x\rho(x)$.

We shall use less to show our original result, i.e., it is contained in:

Theorem

If $T(x) = O(x\rho(x))$ for any T with $T' \in L^\infty(1, \infty)$ such that $G_T(s)$ has analytic continuation to $\Re e s > \alpha$, then $\rho(x) = \Omega(1)$.

J. Vindas

Wiener-Ikehara theorem
The proof: open mapping theorem argument

If $T(x) = O(x\rho(x))$ for any T with $T' \in L^\infty(1, \infty)$ such that $G_T(s)$ has analytic continuation to $\Re s > \alpha$, then $\rho(x) = \Omega(1)$.

- Let Y be the Fréchet space of Lipschitz continuous functions T on $[1, \infty)$ such that $G_T(s)$ can be analytically continued to $\Re s > \alpha$ and continuously extended to $\Re s \geq \alpha$.
- The natural topology of Y is given by the seminorms
 \[\|T\|_{Y,n} = \text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im s| \leq n} |G_T(s)|, \quad n = 1, 2, \ldots \]
- The second Fréchet space $Z \subseteq Y$ is defined via the norms
 \[\|T\|_{Z,n} = \sup_{x \geq 1} \left| \frac{T(x)}{x\rho(x)} \right| + \|T\|_{Y,n}, \quad n = 1, 2, \ldots \]
- The inclusion $Z \to Y$ is continuous and our hypothesis is $Z = Y$.

The open mapping theorem implies there are $N, C > 0$ such that
\[\sup_{x \geq 1} \left| \frac{T(x)}{x\rho(x)} \right| \leq C \|T\|_{Y,N} \]
If \(T(x) = O(x\rho(x)) \) for any \(T \) with \(T' \in L^\infty(1, \infty) \) such that \(GT(s) \) has analytic continuation to \(\Re s > \alpha \), then \(\rho(x) = \Omega(1) \).

- Let \(Y \) be the Fréchet space of Lipschitz continuous functions \(T \) on \([1, \infty)\) such that \(GT(s) \) can be analytically continued to \(\Re s > \alpha \) and continuously extended to \(\Re s \geq \alpha \).

- The natural topology of \(Y \) is given by the seminorms
 \[\| T \|_{Y,n} = \text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im s| \leq n} |G_T(s)|, \quad n = 1, 2, \ldots \]

- The second Fréchet space \(Z \subseteq Y \) is defined via the norms
 \[\| T \|_{Z,n} = \sup_{x \geq 1} |T(x)/(x\rho(x))| + \| T \|_{Y,n}, \quad n = 1, 2, \ldots \]

- The inclusion \(Z \rightarrow Y \) is continuous and our hypothesis is \(Z = Y \).

The open mapping theorem implies there are \(N, C > 0 \) such that
\[\sup_{x \geq 1} \left| \frac{T(x)}{x\rho(x)} \right| \leq C \| T \|_{Y,N}. \]
If \(T(x) = O(x \rho(x)) \) for any \(T \) with \(T' \in L^\infty(1, \infty) \) such that \(G_T(s) \) has analytic continuation to \(\Re s > \alpha \), then \(\rho(x) = O(1) \).

- Let \(Y \) be the Fréchet space of Lipschitz continuous functions \(T \) on \([1, \infty)\) such that \(G_T(s) \) can be analytically continued to \(\Re s > \alpha \) and continuously extended to \(\Re s \geq \alpha \).

- The natural topology of \(Y \) is given by the seminorms

\[
\| T \|_{Y,n} = \text{ess sup}_{x \geq 1} \left| T'(x) \right| + \sup_{\Re s \geq \alpha, |\Im s| \leq n} \left| G_T(s) \right|, \quad n = 1, 2, \ldots
\]

- The second Fréchet space \(Z \subseteq Y \) is defined via the norms

\[
\| T \|_{Z,n} = \sup_{x \geq 1} \left| T(x)/(x \rho(x)) \right| + \| T \|_{Y,n}, \quad n = 1, 2, \ldots
\]

- The inclusion \(Z \rightarrow Y \) is continuous and our hypothesis is \(Z = Y \).

The open mapping theorem implies there are \(N, C > 0 \) such that

\[
\sup_{x \geq 1} \left| \frac{T(x)}{x \rho(x)} \right| \leq C \| T \|_{Y,N}
\]
The proof: open mapping theorem argument

If $T(x) = O(x\rho(x))$ for any T with $T' \in L^\infty(1, \infty)$ such that $G_T(s)$ has analytic continuation to $\Re s > \alpha$, then $\rho(x) = \Omega(1)$.

- Let Y be the Fréchet space of Lipschitz continuous functions T on $[1, \infty)$ such that $G_T(s)$ can be analytically continued to $\Re s > \alpha$ and continuously extended to $\Re s \geq \alpha$.

- The natural topology of Y is given by the seminorms
 \[\|T\|_{Y,n} = \text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im s| \leq n} |G_T(s)|, \quad n = 1, 2, \ldots \]

- The second Fréchet space $Z \subseteq Y$ is defined via the norms
 \[\|T\|_{Z,n} = \sup_{x \geq 1} |T(x)/(x\rho(x))| + \|T\|_{Y,n}, \quad n = 1, 2, \ldots \]

- The inclusion $Z \rightarrow Y$ is continuous and our hypothesis is $Z = Y$.

The open mapping theorem implies there are $N, C > 0$ such that
\[\sup_{x \geq 1} \left| \frac{T(x)}{x\rho(x)} \right| \leq C \|T\|_{Y,N} \]
The proof: using the inequality

The key inequality

\[
\sup_{x \geq 1} \left| \frac{T(x)}{x \rho(x)} \right| \leq C \left(\text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im m s| \leq N} |G_T(s)| \right)
\]

extends to the completion of \(Y \) with respect to \(\| \cdot \|_{Y,N} \).

Any \(T \) for which \(T'(x) = o(1), T(1) = 0 \), and whose Mellin transform has analytic continuation in a neighborhood of \(\{ s : \Re s \geq \alpha, |\Im m s| \leq N \} \) is in that completion.

What remains to be done?

- We further proceed by contradiction and assume that \(\rho(x) \to 0 \).
- We construct a \(T \) with these properties such that when inserted in the key inequality contradicts \(\rho(x) \to 0 \).
The proof: using the inequality

The key inequality

\[\sup_{x \geq 1} \left| \frac{T(x)}{x \rho(x)} \right| \leq C \left(\text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im m s| \leq N} |G_T(s)| \right) \]

extends to the completion of \(Y \) with respect to \(\| \cdot \|_{Y,N} \).

Any \(T \) for which \(T'(x) = o(1), T(1) = 0 \), and whose Mellin transform has analytic continuation in a neighborhood of \(\{ s : \Re s \geq \alpha, |\Im m s| \leq N \} \) is in that completion.

What remains to be done?

- We further proceed by contradiction and assume that \(\rho(x) \to 0 \).
- We construct a \(T \) with these properties such that when inserted in the key inequality contradicts \(\rho(x) \to 0 \).
The proof: using the inequality

The key inequality

\[
\sup_{x \geq 1} \left| \frac{T(x)}{x \rho(x)} \right| \leq C \left(\text{ess sup}_{x \geq 1} |T'(x)| + \sup_{\Re s \geq \alpha, |\Im m s| \leq N} |G_T(s)| \right)
\]

extends to the completion of \(Y \) with respect to \(\| \cdot \|_{Y,N} \).

Any \(T \) for which \(T'(x) = o(1), \ T(1) = 0 \), and whose Mellin transform has analytic continuation in a neighborhood of \(\left\{ s : \Re s \geq \alpha, |\Im m s| \leq N \right\} \) is in that completion.

What remains to be done?

- We further proceed by contradiction and assume that \(\rho(x) \to 0 \).
- We construct a \(T \) with these properties such that when inserted in the key inequality contradicts \(\rho(x) \to 0 \).
Since $\rho(x) \to 0$, we can choose a positive non-increasing function $\ell(x) \to 0$ such that $\ell(\log x)/\rho(x) \to \infty$.

Lemma

Let ℓ be a positive non-increasing function such that $\ell(x) = o(1)$. Then, there is a positive function L such that

$$\ell(x) \ll L(x) = o(1)$$

and an angle $\pi/2 < \theta < \pi$ such that $\mathcal{L}\{L; s\} = \int_0^\infty L(x)e^{-sx}dx$ has analytic continuation to the sector $-\theta < \arg s < \theta$

We choose L as in this lemma. If we manage to show

$$L(\log x) \ll \rho(x),$$

this contradicts $\ell(\log x)/\rho(x) \to \infty$ and hence one must have $\rho(x) \not\to 0$.

J. Vindas

Wiener-Ikehara theorem
We now consider

\[T_b(x) := \int_1^x L(\log u) \cos(b \log u) \, du. \]

Its Mellin transform

\[G_{T_b}(s) = \frac{1}{2s} \left(\mathcal{L}\{L; s - 1 + ib\} + \mathcal{L}\{L; s - 1 - ib\} \right). \]

is analytic in \(\{s : \Re s \geq \alpha, |\Im s| \leq N\} \) for sufficiently large \(b \).

We have the right to apply the key inequality to \(T_b \)

\[
\sup_{x \geq 1} \left| \frac{T_b(x)}{x\rho(x)} \right| \leq C \left(\esssup_{x \geq 1} \left| T'_b(x) \right| + \sup_{\Re s \geq \alpha, |\Im s| \leq N} \left| G_{T_b}(s) \right| \right)
\]

Further manipulations of this inequality and studying some asymptotics for \(T_b \) lead to

\[L(\log x) \ll \rho(x). \]
Some references

This talk is based on our article:

For sharp versions of the W-I theorem without remainder, see

Remainders might be deduced from shape of region of analytic continuation + bounds, see e.g. the recent works:

Some references

This talk is based on our article:

For sharp versions of the W-I theorem without remainder, see

Remainders might be deduced from shape of region of analytic continuation + bounds, see e.g. the recent works:

Some references

This talk is based on our article:

For sharp versions of the W-I theorem without remainder, see

Remainders might be deduced from shape of region of analytic continuation + bounds, see e.g. the recent works:

