Determination of an unknown diffusion coefficient in a parabolic problem

Karel Van Bockstal, supervisor: Marián Slodička
Ghent University
Department of Mathematical Analysis
Numerical Analysis and Mathematical Modelling Research Group

Application

\triangleright Spontaneous potential welllogging is an important technique to detect parameters (e.g. resistivity, diffusivity) of the formation in petroleum exploitation;
\triangleright The resistivity can depend on temperature and humidity in some geological formations. This makes the problem of the resistivity identification time-dependent.

Mathematical model (IBVP)

Find (K, u) such that $(T>0$ fixed $)$

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot(K \nabla u) & =f(u) & & \text { in }(0, T) \times \Omega ; \\
u & =g^{D} & & \text { in }(0, T) \times \Gamma_{D} ; \\
-K \nabla u \cdot \nu & =g^{N} & & \text { in }(0, T) \times \Gamma_{N} ; \\
u(0) & =u_{0} & & \text { in } \Omega ;
\end{aligned}
$$

with the following conditions on Γ_{0}

$$
\left\{\begin{aligned}
\int_{\Gamma_{0}}-K \nabla u \cdot \boldsymbol{\nu} & =h(t) \text { in }(0, T) ; \\
u & =U(t) \text { on }(0, T) \times \Gamma_{0}
\end{aligned}\right.
$$

Solution method: time discretization

The time discretization is based on Backward Euler's method. Divide the time interval $[0, T]$ into $n \in \mathbb{N}$ equidistant subintervals $\left(t_{i-1}, t_{i}\right)$ for $t_{i}=i \tau$, where $\tau=T / n$ and introduce the following notation for any function z

$$
z_{i}=z\left(t_{i}\right), \quad \delta z_{i}=\frac{z_{i}-z_{i-1}}{\tau}
$$

First solution method: determine a solution of

$$
\begin{aligned}
\delta u_{i}-\nabla \cdot\left(K_{i} \nabla u_{i}\right) & =f\left(u_{i-1}\right) & & \text { in } \Omega ; \\
u_{i} & =0 & & \text { on } \Gamma_{D} ; \\
-K_{i} \nabla u_{i} \cdot \nu & =0 & & \text { on } \Gamma_{N} ; \\
\int_{\Gamma_{0}}-K_{i} \nabla u_{i} \cdot \nu & =h_{i} & &
\end{aligned}
$$

for a given $K_{i}, i=1, \ldots, n$. Search K_{i} such that $\left.u_{i}\right|_{\Gamma_{0}}=U_{i}$.
Second solution method: solve

$$
\begin{aligned}
\delta u_{i}-\nabla \cdot\left(K_{i} \nabla u_{i}\right) & =f\left(u_{i-1}\right) & & \text { in } \Omega ; \\
u_{i} & =0 & & \text { on } \Gamma_{D} ; \\
-K_{i} \nabla u_{i} \cdot \nu & =0 & & \text { on } \Gamma_{N} ; \\
u_{i} & =U_{i} & & \text { on } \Gamma_{0}
\end{aligned}
$$

for a given $K_{i}, i=1, \ldots, n$. Search K_{i} such that $\int_{\Gamma_{0}}-K_{i} \nabla u_{i} \cdot \boldsymbol{\nu}=h_{i}$.

First result

Both solution methods give the existence of $\left(K_{i}, u_{i}\right) \in \mathbb{R}_{+} \times V$ for $\tau<\tau_{0}$, with $V:=\left\{\varphi \in H^{1}(\Omega) ;\left.\varphi\right|_{\Gamma_{D}}=0,\left.\varphi\right|_{\Gamma_{0}}=\right.$ const $\}$.

Rothe functions

\square
(a)
(b)

Figure 1: Rothe's piecewise constant function $\bar{u}_{n}(\mathrm{a})$ and piecewise linear in time function $u_{n}(\mathrm{~b})$.

Variational formulation of IBVP

Find (K, u) such that

$$
\begin{aligned}
\left(\partial_{t} u, \varphi\right)+(K \nabla u, \nabla \varphi)+\left.h \varphi\right|_{\Gamma_{0}} & =(f(u), \varphi), \quad \varphi \in V \\
\left.u\right|_{\Gamma_{0}} & =U
\end{aligned}
$$

Second result (limit $n \rightarrow \infty$, i.e. $\tau \rightarrow 0$)

There exist a weak solution of the IBVP.

Numerical experiment

$\triangleright \Omega:=\left(-\frac{1}{2}, 1\right) \times(-1,1), \Omega_{0}:=\left(-\frac{1}{2}, 0\right) \times(-1,1), T=1$;
$\triangleright \Gamma_{0}: x=-\frac{1}{2}, \Gamma_{D}: x=1, \Gamma_{N}: y=-1$ and $y=1$;
$\triangleright K(t, x, y):=\tilde{k}(t) \mathbf{1}_{\{x<0\}}+\frac{1}{2}$;
\triangleright The exact solution (for checking purposes):

$$
\begin{aligned}
K(t, x, y) & :=(1+\sin (10 t)) 1_{\{x<0\}}+\frac{1}{2} \\
u(t, x, y) & :=(1+t) \sin \left(\frac{\pi}{2}(1-x)\right)
\end{aligned}
$$

\triangleright Add noise with magnitude 1% and 5% to the additional condition $h(t):=\frac{\pi}{\sqrt{2}}(1+t)(1.5+\sin (10 t)) ;$
\triangleright The time interval is divided into small intervals of length $\tau=0.02$;
\triangleright Lagrange P1- and P2-FEM: the space domain is divided into 144528 triangles; \triangleright Recovery of $\tilde{k}(t)$: on each time-step $t_{i}, i=1, \ldots, 50$, minimalize the functional (use the nonlinear conjugate gradient method)

$$
J\left(\tilde{k}_{i}\right):=\left(\int_{\Gamma_{0}}\left(\tilde{k}_{i}+0.5\right) \nabla u_{i} \cdot \boldsymbol{\nu}-h\left(t_{i}\right)\right)^{2} .
$$

(a)

(b)

Figure 2: Numerical value of \tilde{k}_{i} using the P1-FEM (a) and P2-FEM (b) with noise $e=1 \%$; $i=1, \ldots, 50$.

(a)

(b)

Figure 3: Numerical value of \tilde{k}_{i} using the P1-FEM (a) and P2-FEM (b) with noise $e=5 \%$; $i=1, \ldots, 50$.

Further research

\triangleright Uniqueness of the solution?
\triangleright Non-linear differential operator: Richardson.

Acknowledgement

This research is possible thanks to the financial support of the BOF/GOA-project no. 01G006B7, Ghent University.

