> Thermoelasticity is the change in the size and shape of a solid object as the temperature of that object fluctuates
> These interactions between the changes in the shape of an object and the fluctuations in the temperature are modeled by mathematical systems

> These so-called thermoelastic systems consist of two equations that are coupled: a parabolic (heat) equation and a vectorial hyperbolic equation for the displacement

> Bounded Lipschitz domain Q in R, d € {1, 2,3}

> €2 is occupied by an isotropic and homogeneous thermoelastic body

> The coupled thermoelastic system describing both the elastic and the thermal behaviours in €2 is given by

Opu — alAu — SV (V-u)+9V0 =p inQ2x (0, T),
00 —pAl —kx AO+~V -Ou=h inQx(0,T)

>u = (ug,..., ud)T and 6 denote respectively the displacement (in meters) and the temperature difference from the reference value (in Kelvin) of the solid elastic material at position x and time t
> The vector source p is a load (body force) vector and the source h is a heat source
> The Lamé parameters v and (3, the coupling (absorbing) coefficient v and the thermal coefficient p are assumed to be positive constants

> The sign “x’ denotes the convolution product in time of a kernel k and a function 6, i.e.

(k % 0)(x,t) = /0 k(t — s)0(x, s)ds, (x,t) € 2 x (0, T)

Type-l thermoelasticity: p 20,k =0 Type-ll thermoelasticity: p =0,k =0 Type-lll thermoelasticity: p Z 0, k £ 0

> A solely space-dependent vector source p(x) is determined from a final in time measurement of the displacement
> An iterative method of Landweber-Fridman type (based on a sequence of well-posed problems) is proposed to recover the unknown source (thus not by minimizing a cost functional)
> The results are valid for all types of thermoelasticity if k is strongly positive definite

> Numerical experiments in 1D for type-l thermoelasticity
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Figure 1 : The exact solution p(x) = x(x — 1) and the numerical solution for the source for Figure 2 : The exact solution and the numerical solution (noise with magnitude 1% on
different values of a relaxation parameter x (noise with magnitude 1% on measurement) measurement)

> A solely time-dependent heat source h(t) is recovered from the averaged temperature when 2 is one-dimensional

> The inverse problem is recasted into a direct problem and the well-posedness of the problem is shown by using Rothe's method
> The results are valid for type-l and type-lll thermoelasticity if k € C([0, T])

> Numerical experiments in 1D for type-l thermoelasticity
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Figure 3 : Exact solution h(t) = 1 + t* and its numerical approximations for different values of Figure 4 : Exact solution h(t) = sin(27t) and numerical approximations for different values of
the time discretization parameter 7 (noise with magnitude 1% on derivative measurement) the time discretization parameter 7 (noise with magnitude 5% on derivative measurement)
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> More dimensional case, anisotropic materials Inverse Problems Sci. Eng., 23(6):956-968.
> Implementing relevant problems with correct physical parameters Van Bockstal, K. and Sloditka, M. (2015b).
> Other type of measurements Recovery of a time-dependent heat source in one-dimensional thermoelasticity of type-Il|.
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