

Inverse source problems in thermoelasticity

K. Van Bockstal^a, M. Slodička^a, L. Marin^{b,c}

^aGhent University Department of Mathematical Analysis Numerical Analysis and Mathematical Modelling Research Group ^bUniversity of Bucharest Department of Mathematics Faculty of Mathematics and Computer Science ^cRomanian Academy Institute of Solid Mechanics

Email: Karel.VanBockstal@UGent.be

Thermoelasticity

- Determodelasticity is the change in the size and shape of a solid object as the temperature of that object fluctuates
- > These interactions between the changes in the shape of an object and the fluctuations in the temperature are modeled by mathematical systems
- > These so-called thermoelastic systems consist of two equations that are coupled: a parabolic (heat) equation and a vectorial hyperbolic equation for the displacement

Domain

- \triangleright Bounded Lipschitz domain Ω in \mathbb{R}^d , $d \in \{1, 2, 3\}$

Thermoelastic systems

 \triangleright The coupled thermoelastic system describing both the elastic and the thermal behaviours in Ω is given by

 $\begin{cases} \partial_{tt} \mathbf{u} - \alpha \Delta \mathbf{u} - \beta \nabla (\nabla \cdot \mathbf{u}) + \gamma \nabla \theta = \mathbf{p} & \text{in } \Omega \times (0, T), \\ \partial_t \theta - \rho \Delta \theta - \mathbf{k} * \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} = h & \text{in } \Omega \times (0, T) \end{cases}$

- \triangleright $\mathbf{u} = (u_1, \ldots, u_d)^{\mathsf{T}}$ and θ denote respectively the displacement (in meters) and the temperature difference from the reference value (in Kelvin) of the solid elastic material at position \mathbf{x} and time t
- \triangleright The vector source **p** is a load (body force) vector and the source *h* is a heat source
- \triangleright The Lamé parameters α and β , the coupling (absorbing) coefficient γ and the thermal coefficient ρ are assumed to be positive constants
- \triangleright The sign '*' denotes the convolution product in time of a kernel k and a function θ , i.e.

$$(k * \theta) (\mathbf{x}, t) := \int_0^t k(t - s) \theta(\mathbf{x}, s) \mathrm{d}s, \qquad (\mathbf{x}, t) \in \Omega \times (0, T)$$

Three types of thermoelasticity		
Type-I thermoelasticity: $ ho ot\equiv 0, k\equiv 0$	Type-II thermoelasticity: $\rho \equiv 0, k \neq 0$	Type-III thermoelasticity: $\rho \neq 0, k \neq 0$
Recovery of a solely space-dependent load vector source in thermoelastic systems [1,2]		
 A solely space-dependent vector source p(x) is determined from a final in time measurement of the displacement An iterative method of Landweber-Fridman type (based on a sequence of well-posed problems) is proposed to recover the unknown source (thus not by minimizing a cost functional) The results are valid for all types of thermoelasticity if k is strongly positive definite Numerical experiments in 1D for type-I and type-III thermoelasticity 		

0.06

Figure 1: The exact source and its corresponding numerical solution, retrieved using various levels of noise in the additional measurement, for $k = 1/\sqrt{t}$

Figure 2: The exact source and its corresponding numerical solution, retrieved using various levels of noise in the additional measurement, for k = 0

Recovery of a solely time-dependent heat source in 1D thermoelastic systems [3]

- > A solely time-dependent heat source h(t) is recovered from the averaged temperature when Ω is one-dimensional
- > The inverse problem is recasted into a direct problem and the well-posedness of the problem is shown by using Rothe's method
- ▷ The results are valid for type-I and type-III thermoelasticity if $k \in C([0, T])$

Presented at the conference ACOMEN 2017 (Ghent, Belgium)

▷ Numerical experiments in 1D for type-I thermoelasticity

Figure 3: Exact solution $h(t) = 1 + t^2$ and its numerical approximations for different values of the time discretization parameter τ (noise with magnitude 1% on derivative measurement)

Figure 4: Exact solution $h(t) = sin(2\pi t)$ and numerical approximations for different values of the time discretization parameter τ (noise with magnitude 5% on derivative measurement)

References

- [1] Van Bockstal, K. and Slodička, M., *Recovery of a space-dependent vector source in thermoelastic* systems, Inverse Problems Sci. Eng., 2015, 23(6), pp. 956–968
- [2] Van Bockstal, K. and Marin, L., *Recovery of a space-dependent vector source in anisotropic* thermoelastic systems, Computer Methods in Applied Mechanics and Engineering, 2017, 321, pp. 269–293
- [3] Van Bockstal, K. and Slodička, M., Recovery of a time-dependent heat source in one-dimensional thermoelasticity of type-III, Inverse Problems in Science and Engineering, 2017, 25(5), pp. 749–770

September 18-22, 2017