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Thermoelasticity

. Thermoelasticity is the change in the size and shape of a solid object as the temperature of that object fluctuates

. These interactions between the changes in the shape of an object and the fluctuations in the temperature are modeled by mathematical systems

. These so-called thermoelastic systems consist of two equations that are coupled: a parabolic (heat) equation and a vectorial hyperbolic equation for the displacement

Domain

. Bounded Lipschitz domain Ω in Rd , d ∈ {1, 2, 3}

. Ω is occupied by an isotropic and homogeneous thermoelastic body

Thermoelastic systems

. The coupled thermoelastic system describing both the elastic and the thermal behaviours in Ω is given by{
∂ttu− α∆u− β∇ (∇ · u) + γ∇θ = p in Ω× (0,T ),

∂tθ − ρ∆θ − k ∗∆θ + γ∇ · ∂tu = h in Ω× (0,T )

. u = (u1, . . . , ud)T and θ denote respectively the displacement (in meters) and the temperature difference from the reference value (in Kelvin) of the solid elastic material at position x and time t

. The vector source p is a load (body force) vector and the source h is a heat source

. The Lamé parameters α and β, the coupling (absorbing) coefficient γ and the thermal coefficient ρ are assumed to be positive constants

. The sign ‘∗’ denotes the convolution product in time of a kernel k and a function θ, i.e.

(k ∗ θ) (x, t) :=

∫ t

0

k(t − s)θ(x, s)ds, (x, t) ∈ Ω× (0,T )

Three types of thermoelasticity

Type-I thermoelasticity: ρ 6≡ 0, k ≡ 0 Type-II thermoelasticity: ρ ≡ 0, k 6≡ 0 Type-III thermoelasticity: ρ 6≡ 0, k 6≡ 0

Recovery of a solely space-dependent load vector source in thermoelastic systems [1,2]

. A solely space-dependent vector source p(x) is determined from a final in time measurement of the displacement

. An iterative method of Landweber-Fridman type (based on a sequence of well-posed problems) is proposed to recover the unknown source (thus not by minimizing a cost functional)

. The results are valid for all types of thermoelasticity if k is strongly positive definite

. Numerical experiments in 1D for type-I and type-III thermoelasticity
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Figure 1: The exact source and its corresponding numerical solution, retrieved using various
levels of noise in the additional measurement, for k = 1/

√
t

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.2  0.4  0.6  0.8  1

S
ou

rc
e 

p 4
(x

)

[0,1]

exact solution
noise = 0.1%

noise  = 0.5%
noise  = 1%

Figure 2: The exact source and its corresponding numerical solution, retrieved using various
levels of noise in the additional measurement, for k = 0

Recovery of a solely time-dependent heat source in 1D thermoelastic systems [3]

. A solely time-dependent heat source h(t) is recovered from the averaged temperature when Ω is one-dimensional

. The inverse problem is recasted into a direct problem and the well-posedness of the problem is shown by using Rothe’s method

. The results are valid for type-I and type-III thermoelasticity if k ∈ C([0,T ])

. Numerical experiments in 1D for type-I thermoelasticity
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Figure 3: Exact solution h(t) = 1 + t2 and its numerical approximations for different values of
the time discretization parameter τ (noise with magnitude 1% on derivative measurement)
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Figure 4: Exact solution h(t) = sin(2πt) and numerical approximations for different values of
the time discretization parameter τ (noise with magnitude 5% on derivative measurement)
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