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Features of superconductivity

» Kammerlingh Onnes (1911): perfect conductivity

Non-superconductive
For various cooled down materials the
electrical resistance not only decreases
with temperature, but also has a sudden
drop at some critical absolute tempera-
ture T¢

Resistivity

- Superconductor

0K T Temperature

> Meissner and Ochsenfeld (1933): perfect diamagnetism
= i.e. expulsion of the magnetic induction B

» Kammerlingh Onnes (1914): threshold field
= restore the normal state through the application of a large magnetic field

» A way to classify superconductors: type-l and type-ll
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Type-| versus Type-Il superconductivity

» Similar behaviour for a very weak external magnetic field when the temperature T < T,
is fixed

> As the external magnetic field becomes stronger it turns out that two possibilities can
happen = phase diagram in the T-H plane

H
H (a) (b)
normal state
normal state HCZ(T)
mixed state

superconducting state @ superconducting state R

> >

T, T T T

> Type-l (a): the B field remains zero inside the superconductor until suddenly, as the
critical field Hc is reached, the superconductivity is destroyed

> Type-ll (b): a mixed state occurs in addition to the superconductive and the normal state
(two different critical fields)

> Main topic: macroscopic models for type-l superconductors

» What are the macroscopic models which are used in the modelling of type-ll
superconductors?
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Macroscopic models for type-ll superconductors

> Dependency between current density J and the electric field E

Current Density

Electric Field

» Ohm'’s law for non-superconducting metal (dashed)

» Bean’s critical-state model for Type-ll superconductors (fine dashed): current either flows

at the critical level J. or not at all

= not fully applicable

> The power law by Rhyner for Type-1l superconductors (continuous)

E=J"y, n € (7,1000)
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Macroscopic models for type-ll superconductors

» The full Maxwell equations (§ = 1) and the quasi-static Maxwell equations (§ = 0) for
linear materials are considered

V X H=J+ 5ebtE Ampere’s law H  magnetic field

€e>0 electric permittivity
V X E= —potH Faraday’s law E electric field

n >0 magnetic permeability
V -Hy =0 J  current density

> The formulation is in terms of electric field = the power law has to be inverted:

1
J=|E| PE, for p € (1,1.2) asp:L1
n—

> Take the time derivative of Ampére's law and the curl of Faraday's law
= nonlinear and degenerate partial differential equation for the electric field

~ 1 ~
5€DE + O¢ (|E|*EE>+%VxVxE:0, §=0v1

poH+V x (|V x H"1V x H) =0

» Studied by: Barrett, Prigozhin, Sokolovsky, Yin, Li, Zou, Wei,...

> |s it possible to derive macroscopic models for type-l superconductors?
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Macroscopic models for type-l superconductors

v

Q C R3: bounded Lipschitz domain, v unit normal vector on 9Q

» London and London (1935): a macroscopic description of type-l superconductors involves
a two-fluid model

oy J V X H=0E+Js +5c0tE Jp normal current density
=Jp+
n ° V X E= —pdtH Js superconducting current density
Jp = cE Ohm'’s law
V -Hp=0 o conductivity of normal electrons

v

Below the critical temperature T, the current consists of superconducting electrons and
normal electrons

» London equations (1935) = local law for Js

0¢ds = N LE
i ns density of superelectrons
V xJs=—-A"B me mass of an electron
m,
A= i —e electric charge of an electron
nse2

=> Correct description of two basic properties of superconductors:

perfect conductivity and perfect diamagnetism (Meissner effect)

V. B=0= 3Ac H (Q)suchthat B=V x Aand V - A=0

VxJs=-AT1B = Ux,t)= —AT1A(x,6), (x,t) € Q7 =Qx(0,T)
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Macroscopic models for type-l superconductors

Generalization of London and London: nonlocal laws

> Pippard (1953)

Jsp )= [ Qx—xHAK ) dx’,  (x,5) € x(0,T)

Q
with
’ X — X,
’ ’ = o x—x ’ ’
Q(x — x )A(x",t) = —C [A(x,t)<(x—x)]exp - s
x — x! |4 n
-~ 3 &ol
Ci= >0, = —2
4megh g0+ 1

&0 the coherence length of the material, / is the mean free path

> Eringen (1984)

’
x — x

Js,e(x, t) = o0 ( ) (x — x") x HX', t) dx’ = —(Kg » H)(x, 1),  (x,t) € 2 x (0, T)

Q

with

el _s .
o0 (s) = { 32 exp ) s < rg;
0 s=2n
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Macroscopic models for type-l superconductors

» Pippard’s nonlocal law fails to explain the vanishing of electrical resistance
> |t is possible to recover from Eringen's law the London equations and the form given by
Pippard
B _ . VxH =0E+Js+ 8edE
=>Js=Jse=—KogxH in { VXE =—pdH
> Taking the curl of Ampére’s law and the time derivative of Faraday's law result in
SepduH 4 opdeH +V x V x H+V x (Ko« H) = 0, §=o0vi1
> For ease of exposition, set p =0 =€e¢=1
» A possible source term f is added

9/23



Introduction: superconductivity Analysis Parabolic model Hyperbolic problem Higher regularity Open questions

[e] [e] 0000
e]e]

(e]e}
[e]e]e] ]

Macroscopic models for type-l superconductors

A vectorial nonlocal linear parabolic and hyperbolic problem for type-I
superconductors

» Two problems

5 8tH+V><V><H+V><(’C0*H) = in Qr;
0=0 = Hxv =0 on 902 x (0, T);
H(x,0) =Hy inQ;

OuH+0H+V XVXH+VXx(KoxH) =f in Qr;

Fo1 = Hxv = on 9Q x (0, T);
- H(x,0) =Hp inQ;
O:H(x,0) = H6 in Q;

» Variational formulation (§ = 0V 1):
5 (BeeH, @)+ (0:H, p)+(V x H,V x @)+ (Ko x H,V X @) = (f, ), VY € Hy(curl,Q)

> Mathematical analysis: estimates on the kernels og and Ky, time discretization

> The well-posedness of both problems is studied, two numerical schemes for computations
are designed and error estimates for the time discretization are derived

10/23



Introduction: superconductivity Analysis Parabolic model Hyperbolic problem Higher regularity Open questions
o] o] 0000

[e]e] [e]e]
0000

:

Estimates on the singular kernels og and g
Using spherical coordinates one can deduce that

> oo(|x|)x € LP(Q2) for p € [1,3) :
el

loo (1xD) %7 ax < <
(e X|)x X exp
0 B \x|2P
Q )
PN (]
sin(0)d6 Z*Pdr <c < oo
3—p 0

> [Is(x, t)] = [ (Ko * H) (x, f)\ < C(q) ||H(f)||q forg>3, vxe

[ < [l
\//}ao (1e 1) i o1

P axt g /lH(x’ )9 dx’ < CIH(®)Il
» For instance, it holds that

| (Ko h,V x h) < C. |[h? += |V x h>, Vh € Ho(curl Q)

|x|P dx

[Js(x, t)| = x — x' x —x' dx’

(,,,)

) (x — x,) X H(x, t) dx’

|0
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Time discretization

Numerical schemes to approximate the solution (6 = 0V 1)

Rothe’s method: divide [0, T] into n € N equidistant subintervals (tj_1, t;) for t; = iT,
where 7 = T /n and for any function u

uj = u(t;), Oru(ty) =duj:= %, Oreu(ti) = 82u; =

Convolution implicitly (from the actual time step):

Suj—duj_1
T

{5(62h,-,so)+(6h,-,so)+(vxh,-,Vch)Jr(/co*h,-,vao) = (Fi,¢);
hy = Hg

Lax-Milgram lemma: existence of a unique solution for any i =1,...,n and any 7 < 79

Convolution explicitly (from the previous time step):

{ 3 (5%hi, ) + (Bhi, @) + (V x hi,V x @) = (Fi,¢) — (Ko * hi -1,V x ¢);
hy = Hj

Lax-Milgram lemma: existence of a unique solution for any i =1,...,n and any 7 > 0

Now: look at both models separately
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Convergence: a priori estimates as uniform bounds
Suppose that f € 2 ((O, T), L2(Q))

(i) LetHy € Lz(Q). Then, there exists a positive constant C such that for all 7 < ¢

max ||h,—||2 +
1<ign

(i) HV -Hy=0=V -fthen V- -h;=0foralli=1,..

., n. Moreover, we have that

n

E [lom ]2 _y T<¢
H0 (curl ,Q)

i=1

(i) If Hy € Hg(curl , Q) then for all T < 7

n n
2
max ||VXh,-||2+E Hvxh,-—vxh,-,lu + E [|smi |2+ < ¢
1<ign
i=1 i=1

(iv) If 9sf € 12 ((o, T, LZ(Q)) .V x (Ko * Hg) € L3(Q), Hg € Hg(curl, Q) and V X ¥V X Hgy € L%(Q) then for all T < 7

n n
2 2 2
max || &h;||% + H&h,»—éh,-,l” + ||V x smi||“T < C
1<i<n
i=1 i=1
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h,: piecewise linear in time spline of the solutions h;,i =1,...,n
Theorem (Existence solution and error estimate for par. problem)

> Let Hyp € L?(Q) and f € L2 ((0, T), LZ(Q)). Assume that V - Hy =0 =V - f(t) for any
time t € [0, T]. Then there exists a solution H € C ([0, T],L2(Q)) N L2 ((o, T),H? (Q))
with 8:H € L2 ((0, T),Hy *(curl , Q)

» Suppose that f € Lip ([O, T, L2(Q))
(i) If Ho € Ho(curl, Q) then

.
max_|[h,(t) — H(®)* + [ |V x [h, — H]||* < C7
te[0,T] 3

(ii) IFV x (Ko Ho) € LZ(Q), Ho € Ho(curl,Q) and V X V X Hy € L2(Q) then
T
max_||hy(t) — H(t)||? +/ IV x [h, — H]||* < Cr?
te0,T] o

» Theorem holds for both numerical schemes!
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Theorem (Existence solution and error estimate for hyp. problem )

> Let Ho € Ho(curl,Q), Hj € L2(Q) and f € L2 ((0, T),L%(Q)). Assume that
V-Ho=V-H)=0=V-f(t) for any time t € [0, T]. Then there exists a solution H

v e 0 @ @ ([o, 71, H%(Q)), aH € 12 ((o, T, H%(Q)> N € ([0, T1,L2(®) and
OuH € L2 ((0, T),Hy ' (curl , Q)

> Suppose that f € Lip ([0, T], L2(Q)).
(i) If Ho € Ho(curl, Q) and H) € L?(Q) then
2

max ||h,(t) — H(t)||? + max <Cr
] telo,

telo, T

Vx/[h,,—H]
0

(ii) IfV x (Ko * Ho) € L*(Q), Ho € Ho(curl,Q), H} € Ho(curl, Q) and V x V x Hy € L*(Q)

then
t
V x / [h, — H]
0

2
< cr?

max ||hy(t) — H(t)||> + max
te[0,T] tel0,T]
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Can we get better error estimates?

> Suboptimal convergence rates O (1) in the space C ([O, T], L2(Q))

> Gronwall lemma: O (7) = e“Tr

> To get rid of the exponential character of this constant, the use of Grénwall's lemma
should be avoided

» How? This can be tried by symmetrification of the problem, namely by incorporation of
the curl operator V x Js into a new convolution kernel

Lemma
(x,t) €Qx(0,T),V-H=0and H-v =0 on 9Q
= VxJs(x,t)=— / K(x,x"YH(x', t) dx'=: —(IC x H)(x, t),
Q

where K: Q x Q = R: (x,x") = w(|x — x’

)

E S S .
with k : (0,00) > R : s ?(1_5)6)@(_5) § <
0 s=>n

» |s this approach successful for both problems?
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I
Can we get better error estimates?

Models in HY(Q) ¢ H(div, Q) N H(curl, Q) (6=0v1)

o . VXVxH =0VxE+VxJs+35eV x IE
VxJs=—-KxH in {VXE — _L0H

—AH =V x (V x H)—=V(V-H)

VE | SepdnH + opdcH — AH4+ K5 H=0

Variational formulation:
5 (BeeH, @) + (0:H,0) + (VH, Vo) + (K« H,0) = (F, ), Yo € H}(Q)
Again two numerical schemes (convolution implicitly < convolution explicitly), i =1,...,n:

{ 5 (82hi, @) + (Shiy @) + (Vhi, V) + (K hig) = (Fi9), @ € HY(Q);
hy = Hy

{ 5 (5%hi,0) + (Shi, @) + (Vhi, V) = (Fi,0) — (Kxhi1,0), @ €HH(Q);
hy = Ho
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Can we get better error estimates?

Properties of the kernel IC
> K(x,-) € Lp(Q) ifpe [1,3), VxeQ

c x—x' x—x
|K(x, x/)|p dx’ < 3 1-— exp | — dx’
[x— /|2 o o
Q B(x,rg)

c 3-2p7"0

< —_— < C | — < oo

= [x—x|2° = " [3-2p],

B(x,rg)

> [(KxH)(x, 1) = /’C(val)H(X/J) dx’| < C(q) [IH(t)ll;, Vg>3, VxeQ
Q
[(K*H)(x, t)] < R /|1c(x,x’)|P dx’ g /lH(x’,r)Iq dx’ < C(q) [H(t)Il
Q Q
> Schoenberg interpolation theorem: KC is positive definite

v

For instance, it holds that (Sobolev embeddings theorem in R3: H(l)(Q) s LS(Q) +
Friedrichs inequality)

0< (K% h,h) < Ce [|h]% ) + < [1B]? < Co [ VAP +< B>, vh e HY(Q)

This leads only to a better estimate if 5=0

v
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Can we get better error estimates?

Theorem (Error estimate for the par. problem in H(Q))
Assume that f € Lip ([0, T],L%(Q)).
(i) If Ho € H(Q) then

.
e lln(t) — H(t)||? +/ IVIh, — H]|I? < CT
telo 0

(ii) If Ho € HY(Q) N H?(Q) then T
i IIhn(t) H(t)||? +/ IV [hn = H]|? < C72
0

te(o,
Proof:
t
K positive definite = / (K% h,h) >0 = no Grénwall
0
» Theorem holds for both numerical schemes!
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Numerical experiment

v

Backward Euler method for the time discretization: 7 =27/, 2 <j<7

> The following scheme is followed:

{ (hi,@) +7(Vhi, Vo) =71(fi,0)—T(Kxhi_1,0)+ (hi—1,¢), ¢ €HQ),
hy = Hp

First order Lagrange elements for the space discretization
Q = unitcube, T=1, n=0.1

> Tp: triangulation of Q

Xm,7 and Vol(T): the midpoint and the volume of a tetrahedron T € T},

> Define the set

Tx ={T €Th: |XmT1—Xx| <ro} CTh

The convolution integral arising in the numerical experiments is solved numerically:

K(x,-) kb Y Vol(T)K(x = Xm, 7)h(Xm,T)
TeTx

Implementation: in FEniCS
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Numerical experiment
|
y—z
ex 2
H*=(1+t)|z-x], E= max ||h,,(t)—H(t)||
x—y teo,
- 10| .
-
20|
S| " S :
kS - 2 .
24
.
16 -
26|
& 3 =5 =3 =3 E) %7 =3 =3 =3 =3 =2
log, T log, 7
() (b)

Figure: Convergence rate (a) C=2 regression line is log, E = 1.9753 log, 7 — 12.858
(b) C = 150: regression line is log, E = 1.9678 log, T — 4.0842
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Open questions

v

Numerical experiment is time consuming: speed up the computations

v

Implementation: convolution implicit

v

Way out via Fourier transform?

v

Full discretization of the models

> Modelling and analysis of a combined model for type-l and type-Il superconductivity?
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