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Introduction: superconductivity Analysis Parabolic model Hyperbolic problem Higher regularity Open questions

Features of superconductivity

I Kammerlingh Onnes (1911): perfect conductivity

For various cooled down materials the
electrical resistance not only decreases
with temperature, but also has a sudden
drop at some critical absolute tempera-
ture Tc

I Meissner and Ochsenfeld (1933): perfect diamagnetism
⇒ i.e. expulsion of the magnetic induction B

I Kammerlingh Onnes (1914): threshold field
⇒ restore the normal state through the application of a large magnetic field

I A way to classify superconductors: type-I and type-II
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Type-I versus Type-II superconductivity

I Similar behaviour for a very weak external magnetic field when the temperature T < Tc
is fixed

I As the external magnetic field becomes stronger it turns out that two possibilities can
happen ⇒ phase diagram in the T -H plane

I Type-I (a): the B field remains zero inside the superconductor until suddenly, as the
critical field Hc is reached, the superconductivity is destroyed

I Type-II (b): a mixed state occurs in addition to the superconductive and the normal state
(two different critical fields)

I Main topic: macroscopic models for type-I superconductors
I What are the macroscopic models which are used in the modelling of type-II

superconductors?
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Macroscopic models for type-II superconductors

I Dependency between current density J and the electric field E

I Ohm’s law for non-superconducting metal (dashed)
I Bean’s critical-state model for Type-II superconductors (fine dashed): current either flows

at the critical level Jc or not at all ⇒ not fully applicable
I The power law by Rhyner for Type-II superconductors (continuous)

E = |J|n−1J, n ∈ (7, 1000)
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Macroscopic models for type-II superconductors

I The full Maxwell equations (δ̃ = 1) and the quasi-static Maxwell equations (δ̃ = 0) for
linear materials are considered

∇× H = J + δ̃ε∂t E Ampère’s law

∇× E = −µ∂t H Faraday’s law

∇ · H0 = 0

H magnetic field

E electric field

J current density

ε > 0 electric permittivity

µ > 0 magnetic permeability

I The formulation is in terms of electric field ⇒ the power law has to be inverted:

J = |E |−
1
p E , for p ∈ (1, 1.2) as p =

n
n − 1

I Take the time derivative of Ampère’s law and the curl of Faraday’s law
⇒ nonlinear and degenerate partial differential equation for the electric field

δ̃ε∂ttE + ∂t

(
|E |−

1
p E
)

+ 1
µ
∇×∇× E = 0, δ̃ = 0 ∨ 1

I If δ̃ = 0:

µ∂tH +∇×
(
|∇ ×H|n−1∇×H

)
= 0

I Studied by: Barrett, Prigozhin, Sokolovsky, Yin, Li, Zou, Wei,...
I Is it possible to derive macroscopic models for type-I superconductors?

6 / 23



Introduction: superconductivity Analysis Parabolic model Hyperbolic problem Higher regularity Open questions

Macroscopic models for type-I superconductors

I Ω ⊂ R3: bounded Lipschitz domain, ν unit normal vector on ∂Ω

I London and London (1935): a macroscopic description of type-I superconductors involves
a two-fluid model

J = Jn + Js
Jn = σE Ohm’s law

∇× H = σE + Js + δ̃ε∂t E

∇× E = −µ∂t H

∇ · H0 = 0

Jn normal current density

Js superconducting current density

σ conductivity of normal electrons

I Below the critical temperature Tc , the current consists of superconducting electrons and
normal electrons

I London equations (1935) ⇒ local law for Js

∂t Js = Λ−1E

∇× Js = −Λ−1B

Λ =
me

ns e2

ns density of superelectrons

me mass of an electron

−e electric charge of an electron

⇒ Correct description of two basic properties of superconductors:

perfect conductivity and perfect diamagnetism (Meissner effect)

∇ · B = 0 ⇒ ∃A ∈ H1(Ω) such that B = ∇× A and ∇ · A = 0

∇× Js = −Λ−1B ⇒ Js (x, t) = −Λ−1A(x, t), (x, t) ∈ QT := Ω × (0, T )
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Macroscopic models for type-I superconductors

Generalization of London and London: nonlocal laws
I Pippard (1953)

Js,p (x, t) =

∫
Ω

Q(x − x′)A(x′, t) dx′, (x, t) ∈ Ω × (0, T )

with

Q(x − x′)A(x′, t) = −̃C
x − x′∣

x − x′
∣4 [A(x′, t) · (x − x′)

]
exp

(
−

∣∣x − x′
∣∣

r0

)
,

C̃ :=
3

4πξ0Λ
> 0, r0 =

ξ0 l

ξ0 + l

ξ0 the coherence length of the material, l is the mean free path

I Eringen (1984)

Js,e (x, t) =

∫
Ω

σ0
(∣∣x − x′

∣∣) (x − x′) × H(x′, t) dx′=: −(K0 ? H)(x, t), (x, t) ∈ Ω × (0, T )

with

σ0 (s) =

{
C̃

2s2 exp
(
− s

r0

)
s < r0 ;

0 s > r0
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Macroscopic models for type-I superconductors

I Pippard’s nonlocal law fails to explain the vanishing of electrical resistance
I It is possible to recover from Eringen’s law the London equations and the form given by

Pippard

⇒ Js = Js,e = −K0 ?H in
{
∇×H = σE + Js + δ̃ε∂tE
∇× E = −µ∂tH

I Taking the curl of Ampère’s law and the time derivative of Faraday’s law result in

δ̃εµ∂ttH + σµ∂tH +∇×∇×H +∇× (K0 ?H) = 0, δ̃ = 0 ∨ 1

I For ease of exposition, set µ = σ = ε = 1
I A possible source term f is added
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Macroscopic models for type-I superconductors

A vectorial nonlocal linear parabolic and hyperbolic problem for type-I
superconductors

I Two problems

δ̃ = 0 ⇒

{
∂tH +∇×∇×H +∇× (K0 ?H) = f in QT ;

H × ν = 0 on ∂Ω× (0,T );
H(x, 0) = H0 in Ω;

δ̃ = 1 ⇒


∂ttH + ∂tH +∇×∇×H +∇× (K0 ?H) = f in QT ;

H × ν = 0 on ∂Ω× (0,T );
H(x, 0) = H0 in Ω;

∂tH(x, 0) = H′0 in Ω;

I Variational formulation (δ̃ = 0 ∨ 1):

δ̃ (∂ttH,ϕ)+(∂tH,ϕ)+(∇×H,∇× ϕ)+(K0 ?H,∇× ϕ) = (f ,ϕ) , ∀ϕ ∈ H0(curl ,Ω)

I Mathematical analysis: estimates on the kernels σ0 and K0, time discretization
I The well-posedness of both problems is studied, two numerical schemes for computations

are designed and error estimates for the time discretization are derived
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Estimates on the singular kernels σ0 and K0
Using spherical coordinates one can deduce that

I σ0(|x|)x ∈ Lp(Ω) for p ∈ [1, 3) :∫
Ω

∣
σ0 (|x|) x

∣p dx 6

∫
B(0,r0)

C

|x|2p

∣∣∣exp

(
−
|x|

r0

)∣∣∣p |x|p dx

6 C

∫ 2π

0

dϕ

∫ π

0

sin(θ)dθ

∫ r0

0

r2−p dr 6 C

[
r3−p

3 − p

]r0

0
< ∞

I |Js (x, t)| = | (K0 ?H) (x, t)| 6 C(q) ‖H(t)‖q for q > 3
2 , ∀x ∈ Ω:

|Js (x, t)| =

∣∣∣∣∫
Ω

σ0
(∣∣x − x′

∣∣) (x − x′) × H(x′, t) dx′

∣∣∣∣ 6

∫
Ω

∣∣σ0
(∣∣x − x′

∣∣) (x − x′)
∣∣ ∣∣H(x′, t)

∣∣ dx′

6 p

√∫
Ω

∣∣σ0
(∣

x − x′
∣)

(x − x′)
∣∣p dx′ q

√∫
Ω

∣
H(x′, t)

∣q dx′ 6 C ‖H(t)‖q

I For instance, it holds that

(K0 ? h,∇× h) 6 Cε ‖h‖2 + ε ‖∇ × h‖2 , ∀h ∈ H0(curl ,Ω)

11 / 23



Introduction: superconductivity Analysis Parabolic model Hyperbolic problem Higher regularity Open questions

Time discretization

Numerical schemes to approximate the solution (δ̃ = 0 ∨ 1)

I Rothe’s method: divide [0,T ] into n ∈ N equidistant subintervals (ti−1, ti ) for ti = iτ ,
where τ = T/n and for any function u

ui := u(ti ), ∂tu(ti ) ≈ δui :=
ui−ui−1

τ
, ∂ttu(ti ) ≈ δ2ui :=

δui−δui−1
τ

I Convolution implicitly (from the actual time step):{
δ̃
(
δ2hi ,ϕ

)
+ (δhi ,ϕ) + (∇× hi ,∇× ϕ) + (K0 ? hi ,∇× ϕ) = (f i ,ϕ) ;

h0 = H0

I Lax-Milgram lemma: existence of a unique solution for any i = 1, . . . , n and any τ < τ0
I Convolution explicitly (from the previous time step):{

δ̃
(
δ2hi ,ϕ

)
+ (δhi ,ϕ) + (∇× hi ,∇× ϕ) = (f i ,ϕ)− (K0 ? hi−1,∇× ϕ);

h0 = H0

I Lax-Milgram lemma: existence of a unique solution for any i = 1, . . . , n and any τ > 0
I Now: look at both models separately
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Convergence: a priori estimates as uniform bounds
Suppose that f ∈ L2

(
(0, T ), L2(Ω)

)
(i) Let H0 ∈ L2(Ω). Then, there exists a positive constant C such that for all τ < τ0

max
16i6n

∥
hi
∥2 +

n∑
i=1

∥∥hi − hi−1

∥∥2
+

n∑
i=1

∥
∇× hi

∥2
τ 6 C

(ii) If ∇ · H0 = 0 = ∇ · f then ∇ · hi = 0 for all i = 1, . . . , n. Moreover, we have that

n∑
i=1

∥
δhi
∥2

H−1
0 (curl ,Ω)

τ 6 C

(iii) If H0 ∈ H0(curl , Ω) then for all τ < τ0

max
16i6n

∥
∇× hi

∥2 +

n∑
i=1

∥∥∇× hi −∇× hi−1

∥∥2
+

n∑
i=1

∥
δhi
∥2

τ 6 C

(iv) If ∂t f ∈ L2
(

(0, T ), L2(Ω)

)
, ∇× (K0 ? H0) ∈ L2(Ω), H0 ∈ H0(curl , Ω) and ∇×∇× H0 ∈ L2(Ω) then for all τ < τ0

max
16i6n

∥
δhi
∥2 +

n∑
i=1

∥∥δhi − δhi−1

∥∥2
+

n∑
i=1

∥
∇× δhi

∥2
τ 6 C
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hn: piecewise linear in time spline of the solutions hi , i = 1, . . . , n

Theorem (Existence solution and error estimate for par. problem)

I Let H0 ∈ L2(Ω) and f ∈ L2
(

(0,T ), L2(Ω)
)

. Assume that ∇ ·H0 = 0 = ∇ · f (t) for any

time t ∈ [0,T ]. Then there exists a solution H ∈ C
(

[0,T ], L2(Ω)
)
∩ L2

(
(0,T ),H

1
2 (Ω)

)
with ∂tH ∈ L2

(
(0,T ),H−1

0 (curl ,Ω)
)

I Suppose that f ∈ Lip
(

[0,T ], L2(Ω)
)

(i) If H0 ∈ H0(curl ,Ω) then

max
t∈[0,T ]

‖hn(t)− H(t)‖2 +

∫ T

0

‖∇ × [hn − H]‖2 6 Cτ

(ii) If ∇× (K0 ? H0) ∈ L2(Ω), H0 ∈ H0(curl ,Ω) and ∇×∇× H0 ∈ L2(Ω) then

max
t∈[0,T ]

‖hn(t)− H(t)‖2 +

∫ T

0

‖∇ × [hn − H]‖2 6 Cτ 2

I Theorem holds for both numerical schemes!
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Theorem (Existence solution and error estimate for hyp. problem )

I Let H0 ∈ H0(curl ,Ω),H′0 ∈ L2(Ω) and f ∈ L2
(

(0,T ), L2(Ω)
)

. Assume that
∇ ·H0 = ∇ ·H′0 = 0 = ∇ · f (t) for any time t ∈ [0,T ]. Then there exists a solution H

such that H ∈ C
(

[0,T ],H
1
2 (Ω)

)
, ∂tH ∈ L2

(
(0,T ),H

1
2 (Ω)

)
∩ C
(

[0,T ], L2(Ω)
)

and

∂ttH ∈ L2
(

(0,T ),H−1
0 (curl ,Ω)

)
I Suppose that f ∈ Lip

(
[0,T ], L2(Ω)

)
.

(i) If H0 ∈ H0(curl ,Ω) and H′0 ∈ L2(Ω) then

max
t∈[0,T ]

‖hn(t)− H(t)‖2 + max
t∈[0,T ]

∥∥∥∥∇× ∫ t

0

[hn − H]

∥∥∥∥2

6 Cτ

(ii) If ∇× (K0 ? H0) ∈ L2(Ω), H0 ∈ H0(curl ,Ω), H′0 ∈ H0(curl ,Ω) and ∇×∇× H0 ∈ L2(Ω)
then

max
t∈[0,T ]

‖hn(t)− H(t)‖2 + max
t∈[0,T ]

∥∥∥∥∇× ∫ t

0

[hn − H]

∥∥∥∥2

6 Cτ 2
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Can we get better error estimates?

I Suboptimal convergence rates O (τ) in the space C
(

[0,T ], L2(Ω)
)

I Grönwall lemma: O (τ) = eCT τ

I To get rid of the exponential character of this constant, the use of Grönwall’s lemma
should be avoided

I How? This can be tried by symmetrification of the problem, namely by incorporation of
the curl operator ∇× Js into a new convolution kernel

Lemma

(x, t) ∈ Ω× (0,T ),∇ ·H = 0 and H · ν = 0 on ∂Ω

⇒ ∇× Js (x, t) = −
∫

Ω

K(x, x′)H(x′, t) dx′=: −(K ?H)(x, t),

where K : Ω× Ω→ R : (x, x′) 7→ κ(|x − x′|)

with κ : (0,∞)→ R : s 7→
{

C̃
2s2

(
1− s

r0

)
exp
(
− s

r0

)
s < r0;

0 s > r0

I Is this approach successful for both problems?
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Can we get better error estimates?

Models in H1(Ω) ⊂ H(div,Ω) ∩H(curl ,Ω) (δ̃ = 0 ∨ 1)

∇× Js = −K ?H in
{
∇×∇×H = σ∇× E +∇× Js + δ̃ε∇× ∂tE
∇× E = −µ∂tH

−∆H = ∇× (∇×H)−∇(∇ ·H)

∇·H=0⇒ δ̃εµ∂ttH + σµ∂tH −∆H +K ?H = 0

Variational formulation:

δ̃ (∂ttH,ϕ) + (∂tH,ϕ) + (∇H,∇ϕ) + (K ?H,ϕ) = (f ,ϕ) , ∀ϕ ∈ H1
0(Ω)

Again two numerical schemes (convolution implicitly ⇔ convolution explicitly), i = 1, . . . , n:{
δ̃
(
δ2hi ,ϕ

)
+ (δhi ,ϕ) + (∇hi ,∇ϕ) + (K ? hi ,ϕ) = (f i ,ϕ) , ϕ ∈ H1

0(Ω);

h0 = H0{
δ̃
(
δ2hi ,ϕ

)
+ (δhi ,ϕ) + (∇hi ,∇ϕ) = (f i ,ϕ)− (K ? hi−1,ϕ), ϕ ∈ H1

0(Ω);

h0 = H0
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Can we get better error estimates?

Properties of the kernel K
I K(x, ·) ∈ Lp(Ω) if p ∈

[
1, 3

2

)
, ∀x ∈ Ω∫

Ω

|K(x, x′)|p dx′ 6

∫
B(x,r0)

C∣
x − x′

∣2p

∣∣∣∣∣
(

1 −

∣∣x − x′
∣∣

r0

)∣∣∣∣∣
p ∣∣∣∣∣exp

(
−

∣∣x − x′
∣∣

r0

)∣∣∣∣∣
p

dx′

6

∫
B(x,r0)

C∣
x − x′

∣2p 6 C

[
r3−2p

3 − 2p

]r0

0
< ∞

I | (K ?H) (x, t)| =

∣∣∣∣∫
Ω

K(x, x′)H(x′, t) dx′
∣∣∣∣ 6 C(q) ‖H(t)‖q , ∀q > 3, ∀x ∈ Ω

| (K ? H) (x, t)| 6 p

√∫
Ω

∣
K(x, x′)

∣p dx′ q

√∫
Ω

∣
H(x′, t)

∣q dx′ 6 C(q) ‖H(t)‖q

I Schoenberg interpolation theorem: K is positive definite
I For instance, it holds that (Sobolev embeddings theorem in R3: H1

0(Ω) ↪→ L6(Ω) +
Friedrichs inequality)

0 6 (K ? h, h) 6 Cε ‖h‖2
H1(Ω)

+ ε ‖h‖2 6 Cε ‖∇h‖2 + ε ‖h‖2 , ∀h ∈ H1
0(Ω)

I This leads only to a better estimate if δ̃ = 0
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Can we get better error estimates?

Theorem (Error estimate for the par. problem in H1(Ω))
Assume that f ∈ Lip

(
[0,T ], L2(Ω)

)
.

(i) If H0 ∈ H1
0(Ω) then

max
t∈[0,T ]

‖hn(t)−H(t)‖2 +

∫ T

0
‖∇[hn −H]‖2 6 Cτ

(ii) If H0 ∈ H1
0(Ω) ∩H2(Ω) then

max
t∈[0,T ]

‖hn(t)−H(t)‖2 +

∫ T

0
‖∇[hn −H]‖2 6 Cτ2

Proof:

K positive definite ⇒
∫ t

0
(K ? h, h) > 0 ⇒ no Grönwall

2

I Theorem holds for both numerical schemes!
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Numerical experiment

I Backward Euler method for the time discretization: τ = 2−j , 2 6 j 6 7
I The following scheme is followed:{

(hi ,ϕ) + τ (∇hi ,∇ϕ) = τ (f i ,ϕ)− τ(K ? hi−1,ϕ) + (hi−1,ϕ) , ϕ ∈ H1
0(Ω),

h0 = H0

I First order Lagrange elements for the space discretization
I Ω = unitcube, T = 1, r0 = 0.1
I Th: triangulation of Ω

I xm,T and Vol(T ): the midpoint and the volume of a tetrahedron T ∈ Th
I Define the set

Tx := {T ∈ Th : |xm,T − x| < r0} ⊂ Th

I The convolution integral arising in the numerical experiments is solved numerically:

K(x, ·) ? h ≈
∑

T∈Tx
Vol(T )K(x − xm,T )h(xm,T )

I Implementation: in FEniCS
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Numerical experiment

Hex = (1 + t2)

(
y − z
z − x
x − y

)
, E = max

t∈[0,T ]
‖hn(t)−H(t)‖2

(a) (b)

Figure: Convergence rate (a) C̃ = 2: regression line is log2 E = 1.9753 log2 τ − 12.858
(b) C̃ = 150: regression line is log2 E = 1.9678 log2 τ − 4.0842
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Open questions

I Numerical experiment is time consuming: speed up the computations
I Implementation: convolution implicit
I Way out via Fourier transform?
I Full discretization of the models
I Modelling and analysis of a combined model for type-I and type-II superconductivity?
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