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I Ω ⊂ Rd , d > 1: bounded domain with Lipschitz continuous boundary
Γ = ∂Ω, final time T .

I Determine the solution u and the convolution kernel K (t) such that
∂tu −∆u + K (t)h(x, t) + K ∗ u = f (u,∇u), in Ω× [0,T ],

−∇u · ν = g , on Γ× [0,T ],

u(x, 0) = u0(x), in Ω

when an additional global measurement∫
Ω

u(x, t)dx = m(t)

is satisfied.
I The sign ‘∗’ denotes the convolution product

(K ∗ u(x)) (t) :=

∫ t

0
K (t − s)u(x, s)ds, (x, t) ∈ Ω× [0,T ].
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I Measured problem

m′(t) +

∫
Γ

g + K (t)

∫
Ω

h + K ∗m =

∫
Ω

f (u,∇u). (MP)

I Variational problem for φ ∈ H1(Ω)

(∂tu, φ)+(∇u,∇φ)+(g , φ)Γ +K (t)(h, φ)+(K ∗u, φ) = (f (u,∇u), φ). (P)
I [De Staelen and Slodička, 2014] proved existence and uniqueness of a

solution:

Theorem (Existence and uniqueness)
Suppose f is bounded and Lipschitz continuous in all variables,
g ∈ C 1([0,T ], L2(Γ)), h ∈ C([0,T ],H1(Ω)) ∩ C 1([0,T ], L2(Ω)) and
mint∈[0,T ] |(h(t), 1)| ≥ ω > 0, m ∈ C 2([0,T ],R) and u0 ∈ H2(Ω). Then there
exists a unique couple solutions 〈u,K 〉 to (P)-(MP), where
u ∈ C([0,T ],H1(Ω)), ∂tu ∈ L∞([0,T ], L2(Ω)) and K ∈ C([0,T ]),
K ′ ∈ L2([0,T ]).

More details: talk on Thursday 27 June at 17h: kernel reconstruction in a semilinear parabolic problem with integral overdetermination.
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I Rothe’s method [Kačur, 1985]: divide [0,T ] into n ∈ N equidistant
subintervals (ti−1, ti ) for ti = iτ , where τ = T/n < 1 and for any function
z

zi := z(ti ), ∂tz(ti ) ≈ δzi := zi−zi−1
τ .

I Time-discrete version of (P) at timestep ti :

(δui , φ) + (∇ui ,∇φ) + (gi , φ)Γ + Ki (hi , φ)

+
i∑

k=1
(Kk ui−kτ, φ) = (fi−1, φ) (DPi)

with fi = f (ui ,∇ui ).
I For given Kj , j = 1, . . . , i , this is equivalent with solving B(ui , φ) = Fi (φ)

with

B(ui , φ) =
1
τ

(ui , φ) + (∇ui ,∇φ),

Fi (φ) = (fi−1, φ)− (gi , φ)Γ − Ki (hi , φ)−
i∑

k=1
(Kk ui−kτ, φ) +

1
τ

(ui−1, φ).
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I We obtain from (MP)

m′i + (gi , 1)Γ + Ki (hi , 1) +
i∑

k=1
Kk mi−kτ = (fi−1, 1). (DMPi)

I On each time step ti , we derive Ki from (DMPi) as follows

m′i + (gi , 1)Γ + Ki (hi , 1) + Ki m0τ +
i−1∑
k=1

Kk mi−kτ = (fi−1, 1). (DMPi)

I Use only solutions from previous timesteps!
I Then, derive ui by solving B(ui , φ) = Fi (φ).
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Numerical algorithm

Algorithm: numerical scheme in pseudo code
input : T > 0, n ∈ N and functions f , g , h, m and u0
output: kernel K and solution u at discrete time steps

1 τ ← T/n;
2 θ ← [0 : τ : T ];
3 K← zeros(n + 1);
4 u← eval(u0, θ);

5 K[0]← 1
(h0, 1)

((f (u0,∇u0), 1)−m′0 − (g0, 1)Γ);

6 for i = 1 to n do

7 K[i ]← 1
(hi , 1) + m0τ

(
(fi−1, 1)− (gi , 1)Γ −

i−1∑
k=1

Kk mi−kτ −m′i

)
;

8 u[i ]← solveEP(B(ui , φ) = Fi (φ));
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Rothe functions
I Piecewise constant and linear in time spline of the solutions ui , i = 1, . . . , n.

I 1 2 3 n−2 n−1 n0 step

u
n

(a)
1 2 3 n−2 n−1 n0 step

u
n

(b)

Figure : Rothe’s piecewise constant function un (a) and Rothe’s piecewise linear
in time function un (b).

I Similarly, we define K̄n, h̄n, ḡn, m̄n and m′n.
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Using Rothe’s functions, we can write (DPi) and (DMPi) on the whole time
frame as

(∂tun, φ) + (∇ūn,∇φ) + (ḡn, φ)Γ + K̄n(h̄n, φ)

+

btcτ∑
k=1

(K̄n(tk )ūn(t − tk )τ, φ) = (f (ūn(t − τ),∇ūn(t − τ)), φ) (DP)

where btcτ = i when t ∈ (ti−1, ti ], and

m′n + (ḡn, 1)Γ + K̄n(h̄n, 1)

+

btcτ∑
k=1

K̄n(tk )m̄n(t − tk )τ = (f (ūn(t − τ),∇ūn(t − τ)), 1). (DMP)
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Error estimates

Theorem (Error estimates [De Staelen et al., 2014])
Let the conditions of the existence theorem be fulfilled. Then, there exists a
positive constant C, independent of the time step τ , such that

max
t∈[0,T ]

|K̄n(t)− K (t)| ≤ Cτ

and
max

t∈[0,T ]
‖un(t)− u(t)‖2 +

∫ T

0
‖∇un(t)−∇u(t)‖2 dt ≤ Cτ 2.
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Numerical experiment: setting
I Ω = [0, 1].
I The forward coupled problems in this procedure are discretized in time

according to the backward Euler method with timestep 2−j T , j = 5, . . . , 9.
I At each time-step, the resulting elliptic problems are solved numerically by

the finite element method (FEM) using first order (P1-FEM) Lagrange
polynomials for the space discretization. A fixed uniform mesh consisting of
50 intervals is used.

I The errors are respectively denoted by

EK (τ) = max
t∈[0,T ]

|K̄n(t)− Kex(t)| ≈ max
06i6n

|K̄n(ti )− Kex(ti )|

and

Eu(τ) = max
t∈[0,T ]

‖un(t)− uex(t)‖2 ≈ max
06i6n

‖un(ti )− uex(ti )‖2
.

I Implementation: in FEniCS [Logg et al., 2012]
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Experiment 1

T = 2, f (r , s) =
√

r 2 + π, m(t) = t2 + t + 1,
uex(x , t) =

(
t2 + t + 1

)
(cos (π x) + 1) , Kex(t) = e−t .

(a) exact solution and numerical solution (b) absolute K(ti )-error

Figure : Kernel reconstruction in Experiment 1.
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Experiment 1
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Figure : Convergence rates for Experiment 1 on logarithmic scale.

Linear regression lines: log2 EK = 0.9132 log2 τ − 0.3412 and
log2 Eu = 2.0086 log2 τ + 0.7784
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Experiment 2

T = 4, f (r , s) =
√

r 2 + s2 + π, m(t) = t2 + t + 1,
uex(x , t) =

(
t2 + t + 1

)
(cos (π x) + 1) , Kex(t) = sin(2πt).

(a) exact solution and numerical solution (b) absolute K(ti )-error

Figure : Kernel reconstruction in Experiment 2.
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Figure : Convergence rates for Experiment 2 on logarithmic scale.

Linear regression lines: log2 EK = 0.9378 log2 τ + 1.6130 and
log2 Eu = 2.2313 log2 τ + 4.9715.
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Conclusion:
I A semilinear parabolic problem of second order with an unknown solely

time-dependent convolution kernel is considered.
I A numerical scheme based on Backward Euler’s method together with a

time-discrete convolution is presented in oder to reconstruct the unknown
convolution kernel based on an integral overdetermination.

I The convergence is of first order in time:

max
t∈[0,T ]

|K̄n(t)− Kex(t)| ≈ O(τ) and max
t∈[0,T ]

‖un(t)− uex(t)‖ ≈ O(τ).

I Numerical experiments support the theoretically obtained results.
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Kačur, J. (1985).
Method of Rothe in evolution equations, volume 80 of Teubner Texte zur Mathematik.
Teubner, Leipzig.

Logg, A., Mardal, K.-A., Wells, G., et al. (2012).
Automated Solution of Differential Equations by the Finite Element Method.
Springer.

17 / 17


	Problem setting
	Solution method
	Time discretization
	Numerical algorithm

	Error Analysis
	Error estimates

	Numerical experiments
	Conclusion

