

Error analysis in the reconstruction of a convolution kernel in a semilinear parabolic problem with integral overdetermination

K. Van Bockstal, Rob H. De Staelen and M. Slodička

Ghent University Department of Mathematical Analysis Numerical Analysis and Mathematical Modelling Research Group

6th International Conference on Advanced Computational Methods in Engineering, ACOMEN 2014, 23–28 June 2014, Ghent, Belgium

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	00	00000	00

Outline

Problem setting

Solution method

Time discretization Numerical algorithm

Error Analysis Error estimates

Numerical experiments

Conclusion

• 0 00 00 00 00 00	Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
	•	0	00	00	00000	00

- $\Omega \subset \mathbb{R}^d$, $d \ge 1$: bounded domain with Lipschitz continuous boundary $\Gamma = \partial \Omega$, final time T.
- Determine the solution u and the convolution kernel K(t) such that

$$\begin{cases} \partial_t u - \Delta u + K(t)h(\mathbf{x}, t) + K * u &= f(u, \nabla u), & \text{ in } \Omega \times [0, T], \\ -\nabla u \cdot \boldsymbol{\nu} &= g, & \text{ on } \Gamma \times [0, T], \\ u(\mathbf{x}, 0) &= u_0(\mathbf{x}), & \text{ in } \Omega \end{cases}$$

when an additional global measurement

$$\int_{\Omega} u(\mathbf{x},t) \mathrm{d}\mathbf{x} = m(t)$$

is satisfied.

► The sign '*' denotes the convolution product

$$(K * u(\mathbf{x}))(t) := \int_0^t K(t-s)u(\mathbf{x},s)\mathrm{d}s, \qquad (\mathbf{x},t) \in \Omega \times [0,T].$$

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	•	00	00	00000	00

Measured problem

$$m'(t) + \int_{\Gamma} g + K(t) \int_{\Omega} h + K * m = \int_{\Omega} f(u, \nabla u).$$
 (MP)

• Variational problem for $\phi \in H^1(\Omega)$

 $(\partial_t u, \phi) + (\nabla u, \nabla \phi) + (g, \phi)_{\Gamma} + K(t)(h, \phi) + (K * u, \phi) = (f(u, \nabla u), \phi).$ (P)

 [De Staelen and Slodička, 2014] proved existence and uniqueness of a solution:

Theorem (Existence and uniqueness)

Suppose f is bounded and Lipschitz continuous in all variables, $g \in C^1([0, T], L^2(\Gamma)), h \in C([0, T], H^1(\Omega)) \cap C^1([0, T], L^2(\Omega))$ and $\min_{t \in [0, T]} |(h(t), 1)| \ge \omega > 0, m \in C^2([0, T], \mathbb{R})$ and $u_0 \in H^2(\Omega)$. Then there exists a unique couple solutions $\langle u, K \rangle$ to (P)-(MP), where $u \in C([0, T], H^1(\Omega)), \partial_t u \in L^{\infty}([0, T], L^2(\Omega))$ and $K \in C([0, T]),$ $K' \in L^2([0, T]).$

More details: talk on Thursday 27 June at 17h: kernel reconstruction in a semilinear parabolic problem with integral overdetermination.

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	• • • •	00	00000	00

▶ Rothe's method [Kačur, 1985]: divide [0, T] into $n \in \mathbb{N}$ equidistant subintervals (t_{i-1}, t_i) for $t_i = i\tau$, where $\tau = T/n < 1$ and for any function z

$$z_i := z(t_i), \qquad \partial_t z(t_i) \approx \delta z_i := \frac{z_i - z_{i-1}}{\tau}.$$

Time-discrete version of (P) at timestep t_i:

$$(\delta u_i, \phi) + (\nabla u_i, \nabla \phi) + (g_i, \phi)_{\Gamma} + K_i(h_i, \phi) + \sum_{k=1}^i (K_k u_{i-k}\tau, \phi) = (f_{i-1}, \phi) \quad (\mathsf{DP}i)$$

with $f_i = f(u_i, \nabla u_i)$.

For given K_j , j = 1, ..., i, this is equivalent with solving $B(u_i, \phi) = F_i(\phi)$ with

$$\begin{split} \mathcal{B}(u_{i},\phi) &= \frac{1}{\tau}(u_{i},\phi) + (\nabla u_{i},\nabla \phi), \\ \mathcal{F}_{i}(\phi) &= (f_{i-1},\phi) - (g_{i},\phi)_{\Gamma} - \mathcal{K}_{i}(h_{i},\phi) - \sum_{k=1}^{i} (\mathcal{K}_{k}u_{i-k}\tau,\phi) + \frac{1}{\tau}(u_{i-1},\phi). \end{split}$$

o o o o o o o o o o o o o o o o o o o	Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
	0	0	0	00	00000	00

▶ We obtain from (MP)

$$m'_i + (g_i, 1)_{\Gamma} + K_i(h_i, 1) + \sum_{k=1}^i K_k m_{i-k} \tau = (f_{i-1}, 1).$$
 (DMP*i*)

• On each time step t_i , we derive K_i from (DMP*i*) as follows

$$m'_i + (g_i, 1)_{\Gamma} + K_i(h_i, 1) + K_i m_0 \tau + \sum_{k=1}^{i-1} K_k m_{i-k} \tau = (f_{i-1}, 1).$$
 (DMP*i*)

- Use only solutions from previous timesteps!
- Then, derive u_i by solving $B(u_i, \phi) = F_i(\phi)$.

Problem setting O	Solution method O	Time discretization ○○ ●	Error Analysis 00 0	Numerical experiments	Conclusion 00
Numerical algorithm					
Humenear algorithm					

Algorithm: numerical scheme in pseudo code

input : T > 0, $n \in \mathbb{N}$ and functions f, g, h, m and u_0 **output**: kernel K and solution u at discrete time steps

$$\begin{array}{c|c} 1 & \tau \leftarrow T/n; \\ 2 & \theta \leftarrow [0:\tau:T]; \\ 3 & \mathsf{K} \leftarrow \mathsf{zeros}(n+1); \\ 4 & \mathsf{u} \leftarrow \mathsf{eval}(u_0,\theta); \\ 5 & \mathsf{K}[0] \leftarrow \frac{1}{(h_0,1)} \left((f(u_0, \nabla u_0), 1) - m'_0 - (g_0,1)_{\Gamma} \right); \\ 6 & \text{for } i = 1 \text{ to } n \text{ do} \\ 7 & \mathsf{K}[i] \leftarrow \frac{1}{(h_i,1) + m_0 \tau} \left((f_{i-1},1) - (g_i,1)_{\Gamma} - \sum_{k=1}^{i-1} \mathsf{K}_k m_{i-k} \tau - m'_i \right); \\ 8 & \mathsf{u}[i] \leftarrow \mathsf{solveEP}(B(u_i,\phi) = F_i(\phi)); \end{array}$$

0 0	Problem setting O	Solution method O	Time discretization 00 0	Error Analysis O O	Numerical experiments	Conclusion OO

Rothe functions

• Piecewise constant and linear in time spline of the solutions $u_i, i = 1, ..., n$.

Figure : Rothe's piecewise constant function \overline{u}_n (a) and Rothe's piecewise linear in time function u_n (b).

Similarly, we define \overline{K}_n , \overline{h}_n , \overline{g}_n , \overline{m}_n and $\overline{m'}_n$.

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	0	00000	00

Using Rothe's functions, we can write (DPi) and (DMPi) on the whole time frame as

$$(\partial_t u_n, \phi) + (\nabla \bar{u}_n, \nabla \phi) + (\bar{g}_n, \phi)_{\Gamma} + \bar{K}_n(\bar{h}_n, \phi) + \sum_{k=1}^{\lfloor t \rfloor_{\tau}} (\bar{K}_n(t_k) \bar{u}_n(t-t_k)\tau, \phi) = (f(\bar{u}_n(t-\tau), \nabla \bar{u}_n(t-\tau)), \phi) \quad (\mathsf{DP})$$

where $\lfloor t
floor_{ au} = i$ when $t \in (t_{i-1}, t_i]$, and

$$\overline{m'}_n + (\overline{g}_n, 1)_{\Gamma} + \overline{K}_n(\overline{h}_n, 1) \\ + \sum_{k=1}^{\lfloor t \rfloor_{\tau}} \overline{K}_n(t_k) \overline{m}_n(t - t_k) \tau = (f(\overline{u}_n(t - \tau), \nabla \overline{u}_n(t - \tau)), 1). \quad (\mathsf{DMP})$$

Problem setting O	Solution method O	Time discretization 00 0	Error Analysis ○○ ●	Numerical experiments	Conclusion 00
Error estimates					

Theorem (Error estimates [De Staelen et al., 2014])

Let the conditions of the existence theorem be fulfilled. Then, there exists a positive constant C, independent of the time step τ , such that

$$\max_{t\in [0,T]} |ar{K}_n(t) - K(t)| \leq C au$$

and

$$\max_{t\in[0,T]} \left\|u_n(t)-u(t)\right\|^2 + \int_0^T \left\|\nabla u_n(t)-\nabla u(t)\right\|^2 \mathrm{d}t \leq C\tau^2.$$

Problem setting O	Solution method O	Time discretization 00 0	Error Analysis 00 0	Numerical experiments •0000	Conclusion 00

Numerical experiment: setting

- ▶ Ω = [0, 1].
- ► The forward coupled problems in this procedure are discretized in time according to the backward Euler method with timestep 2^{-j}T, j = 5,...,9.
- At each time-step, the resulting elliptic problems are solved numerically by the finite element method (FEM) using first order (P1-FEM) Lagrange polynomials for the space discretization. A fixed uniform mesh consisting of 50 intervals is used.
- The errors are respectively denoted by

$$E_{\mathcal{K}}(\tau) = \max_{t \in [0,T]} |\bar{K}_n(t) - K_{\text{ex}}(t)| \approx \max_{0 \leqslant i \leqslant n} |\bar{K}_n(t_i) - K_{\text{ex}}(t_i)|$$

and

$$E_{u}(\tau) = \max_{t \in [0,T]} \|u_{n}(t) - u_{ex}(t)\|^{2} \approx \max_{0 \leq i \leq n} \|u_{n}(t_{i}) - u_{ex}(t_{i})\|^{2}.$$

Implementation: in FEniCS [Logg et al., 2012]

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	00	0000	00

Experiment 1

$$T = 2, \quad f(r,s) = \sqrt{r^2 + \pi}, \quad m(t) = t^2 + t + 1,$$

 $u_{\text{ex}}(x,t) = (t^2 + t + 1) (\cos(\pi x) + 1), \quad \mathcal{K}_{\text{ex}}(t) = e^{-t}.$

Figure : Kernel reconstruction in Experiment 1.

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	00	0000	00

Experiment 1

Figure : Convergence rates for Experiment 1 on logarithmic scale.

Linear regression lines: $\log_2 E_K = 0.9132 \log_2 \tau - 0.3412$ and $\log_2 E_u = 2.0086 \log_2 \tau + 0.7784$

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	00	00000	00

Experiment 2

$$T = 4, \quad f(r,s) = \sqrt{r^2 + s^2 + \pi}, \quad m(t) = t^2 + t + 1,$$

$$u_{\text{ex}}(x,t) = (t^2 + t + 1) (\cos(\pi x) + 1), \quad \mathcal{K}_{\text{ex}}(t) = \sin(2\pi t).$$

Figure : Kernel reconstruction in Experiment 2.

	Problem setting O	Solution method O	Time discretization 00 0	Error Analysis 00 0	Numerical experiments 0000●	Conclusion OO
--	----------------------	----------------------	--------------------------------	---------------------------	--------------------------------	------------------

Figure : Convergence rates for Experiment 2 on logarithmic scale.

Linear regression lines: $\log_2 E_K = 0.9378 \log_2 \tau + 1.6130$ and $\log_2 E_u = 2.2313 \log_2 \tau + 4.9715$.

F	Problem setting O	Solution method O	Time discretization 00 0	Error Analysis OO O	Numerical experiments	Conclusion ●O

Conclusion:

- ► A semilinear parabolic problem of second order with an unknown solely time-dependent convolution kernel is considered.
- A numerical scheme based on Backward Euler's method together with a time-discrete convolution is presented in oder to reconstruct the unknown convolution kernel based on an integral overdetermination.
- The convergence is of first order in time:

$$\max_{t\in[0,T]}|\bar{K}_n(t)-K_{\mathrm{ex}}(t)|\approx\mathcal{O}(\tau) \text{ and } \max_{t\in[0,T]}\|u_n(t)-u_{\mathrm{ex}}(t)\|\approx\mathcal{O}(\tau).$$

Numerical experiments support the theoretically obtained results.

Problem setting	Solution method	Time discretization	Error Analysis	Numerical experiments	Conclusion
0	0	00	00	00000	0.

References I

De Staelen, R. H. and Slodička, M. (2014).

Reconstruction of a convolution kernel in a semilinear parabolic problem based on a global measurement.

Nonlinear Analysis: Theory, Methods & Applications, (submitted).

De Staelen, R. H., Van Bockstal, K., and Slodička, M. (2014).

Error analysis in the reconstruction of a convolution kernel in a semilinear parabolic problem with integral overdetermination.

Comput. Appl. Math., (submitted).

Kačur, J. (1985).

Method of Rothe in evolution equations, volume 80 of Teubner Texte zur Mathematik. Teubner, Leipzig.

Logg, A., Mardal, K.-A., Wells, G., et al. (2012).

Automated Solution of Differential Equations by the Finite Element Method. Springer.