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I Ω ⊂ Rd , d > 1: bounded domain with Lipschitz continuous boundary
Γ = ∂Ω, final time T .

I Determine the solution u(x , t) and the convolution kernel K (t) such that
∂tu −∇ · (∇β(u)) + K ∗ u = ‘?′, in Ω× [0,T ],

−∇β(u) · ν = g , on Γ× [0,T ],

u(x, 0) = u0(x), in Ω,

when an additional global measurement∫
Ω

u(x, t)dx = m(t), t ∈ [0,T ]

is satisfied.

I The sign ‘∗’ denotes the convolution product

(K ∗ u(x)) (t) :=

∫ t

0

K (t − s)u(x, s)ds, (x, t) ∈ Ω× [0,T ].
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I Such type of integro-differential problems arise in the theory of reactive
contaminant transport [Delleur, 1999] and in the modelling of phenomena
in viscoelasticity [MacCamy, 1977].

I [De Staelen and Slodička, 2015] studied the reconstruction of K based on
the same measurement in the semilinear equation

∂tu −∆u + K (t)h +

∫ t

0

K (t − s)u(x, s) ds = f (u,∇u).

I Main idea: measure the equation into space, i.e.

m′(t) +

∫
Γ

g(t) + K (t)

∫
Ω

h(t) + (K ∗m)(t) =

∫
Ω

f (u(t),∇u(t)).
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The measured problem

m′(t) +

∫
Γ

g(t) + K (t)

∫
Ω

h(t) + (K ∗m)(t) =

∫
Ω

f (u(t),∇u(t)) (MP)

together with the variational formulation for φ ∈ H1(Ω)

(∂tu, φ) + (∇u,∇φ) + (g , φ)Γ + K (t)(h, φ) + (K ∗ u, φ) = (f (u,∇u), φ) (P)

represent the variational formulation of the inverse problem.

I The inverse problem is reformulated into a direct problem!

I Existence and uniqueness of a solution is proved using Rothe’s method
[Kačur, 1985].

I Uniform boundedness of K is crucial into the analysis (to obtain global in
time solvability).
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Uniform boundedness of K follows from (MP) and Grönwall’s lemma:

|K (t)|
∣∣∣∣∫

Ω

h(t)

∣∣∣∣ 6 ∣∣∣∣∫
Ω

f (u(t),∇u(t))

∣∣∣∣+ |(K ∗m)(t)|+ |m′(t)|+
∣∣∣∣∫

Γ

g(t)

∣∣∣∣
6 C +

∫ t

0

|K (s)| ds

if f : R→ R is uniformly bounded, g ∈ C
(
[0,T ], L2(Γ)

)
and m ∈ C1([0,T ]).

⇒ max
t∈[0,T ]

|K (t)| 6 C if min
t∈[0,T ]

|(h(t), 1)| ≥ ω > 0.

I In this talk, the crucial K (t)h-term is skipped out of the PDE. What are
the implications?
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I Measure the problem:

m′(t) +

∫
Γ

g(t) + (K ∗m)(t) =

∫
Ω

‘?′.

I Idea: take the time derivative of this equation to obtain K (t) seperately, i.e.

m′′(t) +

∫
Γ

∂tg(t) + K (t)m(0) + (K ∗m′)(t) = ∂t

∫
Ω

‘?′.

I What is possible for ‘?’?

I ���f (u).

I We make a safe choice for the right-hand side ‘?’, i.e.∫ t

0

f (u(·, s)) ds.

I We have made the problem nonlinear by introducing the possible nonlinear
function β : R→ R.
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Determine the solution u(x , t) and the convolution kernel K (t) such that

∂tu −∇ · (∇β(u)) + K ∗ u =

∫ t

0

f (u(·, s)) ds + F , in Ω× [0,T ],

−∇β(u) · ν = g , on Γ× [0,T ],

u(x, 0) = u0(x), in Ω,∫
Ω

u(x, t)dx = m(t).
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The coupled direct variational problem is given by

m′′(t)+K (t)m(0)+(K ∗m′)(t) = (f (u(t)), 1)+(F ′(t), 1)−(g ′(t), 1)Γ (MP2)

and

(∂tu(t), φ) + (∇β(u(t)),∇φ) + ((K ∗ u)(t), φ)

=

(∫ t

0

f (u(s)) ds, φ

)
+ (F (t), φ)− (g(t), φ)Γ , (P2)

where F ′(t) := ∂tF (t) and g ′(t) := ∂tg(t).
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I Rothe’s method [Kačur, 1985]: divide [0,T ] into n ∈ N equidistant
subintervals (ti−1, ti ] for ti = iτ , where τ = T/n < 1 and for any function z

zi ≈ z(ti ), ∂tz(ti ) ≈ δzi := zi−zi−1

τ .

I Based on (P2) and (MP2), the following decoupled system for
approximating the unknowns (K , u) at time ti , 1 6 i 6 n, is proposed

(δui , φ) + (∇β(ui ),∇φ) +

(
i∑

k=1

Kk ui−kτ , φ

)

=

(
i−1∑
k=0

f (uk )τ , φ

)
+ (Fi , φ)− (gi , φ)Γ (DP2i)

and

m′′i + Ki m(0) +
i∑

k=1

Kk m′i−kτ = (f (ui−1), 1) + (F ′i , 1)− (g ′i , 1)Γ . (DMP2i)
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We assume that

I f : R→ R bounded,

I β : R→ R is everywhere differentiable and satisfies

β(0) = 0,

0 < β0 6β′(s) 6 β1, ∀s ∈ R,

I u0 ∈ L2(Ω),

I g ∈ C1
(
[0,T ], L2(Γ)

)
,

I F ∈ C1
(
[0,T ], L2(Ω)

)
,

I m ∈ C2 ([0,T ]) with m(0) 6= 0.

and refer to these conditions as (?).
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I Set τ0 = min

{
1,
|m(0)|

2 |m′(0)|

}
. Then for any τ < τ0, we get by the triangle

inequality that

|m(0) + m′(0)τ | > |m(0)| − |m′(0)| τ >
|m(0)|

2
> 0.

For each i ∈ {1, . . . , n}, the following recursive deduction can be made:

I Let u0, . . . , ui−1 ∈ L2(Ω) and K1, . . . ,Ki−1 ∈ R be given.

I Then, (DMP2i) implies the existence of a unique Ki ∈ R such that

Ki [m(0) + m′(0)τ ]

= (f (ui−1), 1) + (F ′i , 1)− (g ′i , 1)Γ −
i−1∑
k=1

Kk m′i−kτ −m′′i .

I Monotone operator theory gives the existence of a unique solution
ui ∈ H1(Ω) to problem (DP2i) when the assumptions (?) are fulfilled
[Vainberg, 1973].

12 / 25



Problem setting Variational formulation Time discretization Numerical experiment Conclusion

A priori estimates

Lemma

Let (?) be satisfied. Then, there exists a positive constant C such that for any
τ < τ0 holds that

max
i=1,...,n

|Ki | 6 C .

Lemma

Let (?) be satisfied. Then there exist positive constants C such that for any
τ < τ0 holds that

max
16j6n

‖uj‖2 +
n∑

i=1

‖∇β(ui )‖2
τ 6 C

and

max
06j6n

‖β(uj )‖ 6 C and
n∑

i=1

‖ui‖2
H1(Ω) τ 6 C .
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A priori estimates

Lemma

Let (?) be satisfied and u0 ∈ H1(Ω). Then there exist positive constants C such
that for any τ < τ0 holds that

n∑
i=1

‖δui‖2
τ + max

16j6n
‖∇β(uj )‖2 +

j∑
i=1

‖∇β(ui )−∇β(ui−1)‖2 6 C

and

max
16j6n

‖uj‖H1(Ω) 6 C and

j∑
i=1

‖∇ui −∇ui−1‖2 6 C .

14 / 25



Problem setting Variational formulation Time discretization Numerical experiment Conclusion

Rothe functions

I Piecewise constant and linear in time spline of the solutions ui , i = 1, . . . , n.

I 1 2 3 n−2 n−1 n0 step

u
n

(a)

1 2 3 n−2 n−1 n0 step

u
n

(b)

Figure : Rothe’s piecewise constant function un (a) and Rothe’s piecewise linear
in time function un (b).

I Similarly, we define K n, F n, F ′n, g n, g ′n, m′n and m′′n.
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Using these so-called Rothe’s functions, (DP2i) and (DMP2i) can be rewritten
on the whole time interval as (dteτ = i and btcτ = i − 1 when t ∈ (ti−1, ti ])

(∂tun(t), φ) + (∇β(un(t)),∇φ) +

dteτ∑
k=1

K n(tk )un(t − tk )τ, φ


=

btcτ∑
k=0

f (un(tk ))τ, φ

+
(
F n(t), φ

)
− (g n(t), φ)Γ

and

m′′n(t) + K n(t)m(0) +

dteτ∑
k=1

K n(tk )m′n(t − tk )τ

= (f (un(t − τ)), 1) +
(
F ′n(t), 1

)
−
(
g ′n(t), 1

)
Γ
.

We want to pass to the limit n→∞ (term by term).
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Theorem (Existence and uniqueness)

Suppose that the conditions (?) are fulfilled. Moreover, assume that u0 ∈ H1(Ω)
and let f : R→ R be global Lipschitz continuous. Then, there exists a unique
weak solution 〈K , u〉 to the problem (P2)-(MP2), where K ∈ L2(0,T ) and
u ∈ C

(
[0,T ], L2(Ω)

)
∩ L2

(
(0,T ),H1(Ω)

)
with ∂tu ∈ L2

(
(0,T ), L2(Ω)

)
.

Proof.
Uses Lemma 1.3.13 of [Kačur, 1985] (compactness argument: H1(Ω) ↪→↪→ L2(Ω)). Note that by the a
priori estimates holds that for every t ∈ [0,T ]

dteτ∑
k=1

K n(tk )un(t − tk )τ = (K n ∗ un)(t) +

∫ τdteτ

t

K n(s)un(t − s) ds = (K n ∗ un)(t) +O (τ)

and

btcτ∑
k=0

f (un(tk ))τ = f (u0)τ +

∫ t

0

f (un(s)) ds −
∫ t

τbtcτ
f (un(s)) ds =

∫ t

0

f (un(s)) ds +O (τ) .
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I We have un → u in C
(
[0,T ], L2(Ω)

)
, un → u in L2

(
(0,T ), L2(Ω)

)
.

I Only weak convergence of the Rothe functions K n to K is proved up to
now (Kn ⇀ K ). Extra assumptions are needed for the strong convergence.

Lemma

Let the assumptions (?) be fulfilled and u0 ∈ H1(Ω). Moreover, assume that
∇β(u0) ∈ H(div; Ω), g ∈ C2

(
[0,T ], L2(Γ)

)
, F ∈ C2

(
[0,T ], L2(Ω)

)
,

m ∈ C3([0,T ]) and f : R→ R is global Lipschitz continuous. Then, there exist
positive constants C and τ0 such that for all τ < τ0 holds that

n∑
i=1

|δKi |2τ 6 C .

By the Arzelà-Ascoli theorem [Rudin, 1987, Theorem 11.28], {Kn} converges
uniformly on [0,T ] to K , i.e. K ∈ C([0,T ]).

18 / 25



Problem setting Variational formulation Time discretization Numerical experiment Conclusion

Error estimates (speed of convergence)

Theorem

Let the assumptions of the previous lemma be fulfilled. Then there exist positive
constants C and τ0 such that for all τ < τ0 holds that∫ T

0

∣∣K n(t)− K (t)
∣∣2 dt +

∫ T

0

‖un(t)− u(t)‖2 6 Cτ 2.

I The convergence of the numerical approximations (K n, un) to the exact
solution (K , u) is optimal in time.
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Numerical experiment: setting

I Ω = [0, 1].

I The forward coupled problems in this procedure are discretized in time
according to the backward Euler method with timestep 2−j T , j = 2, . . . , 8.

I At each time-step, the resulting elliptic problems are solved numerically by
the finite element method (FEM) using first order (P1-FEM) Lagrange
polynomials for the space discretization. A fixed uniform mesh consisting of
100 intervals is used.

I At each timestep, the nonlinearity ∇β(ui ) is approximated by β′(ui−1)∇ui .

I The error on K is denoted by

EKex(τ) =

∫ T

0

|Kn(t)− Kex(t)|2 dt.

I Implementation: in FEniCS [Logg et al., 2012].
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β linear

T = 1, f (s) = β(s) = s + 1, m(t) = 4/3 t2 + 4/3 t + 4/3,

uex(x , t) =
(
1 + t + t2

) (
1 + x2

)
, Kex(t) = exp(t)

log2 EKex
= 1.7875 log2 τ − 1.2878
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β nonlinear

T = 1
2 , f (s) = s + 5, β(s) = s2 + s,

m(t) =
π t3 + π t2 + 2 t3 + π t + 2 t2 + π + 2 t + 2

π
,

uex(x , t) =
(
1 + t + t2 + t3

)
(1 + sin (π x)) , Kex(t) = sin(2πt)

log2 EKex = 2.0478 log2 τ + 0.2911

-0.5

 0

 0.5

 1

 1.5

 0  0.1  0.2  0.3  0.4  0.5

K
e
rn

e
l 
K

(t
)

t

exact solution
τ  = 2

-3
τ  = 2

-5

τ  = 2
-7

(c) Kernel reconstruction

9 8 7 6 5 4 3

log2 τ

20

18

16

14

12

10

8

6

4

lo
g 2
E
K

ex

(d) Error EKex (τ). 22 / 25



Problem setting Variational formulation Time discretization Numerical experiment Conclusion

Conclusion:

I A nonlinear parabolic problem of second order with an unknown solely
time-dependent convolution kernel is considered.

I A numerical scheme based on Backward Euler’s method together with a
time-discrete convolution is presented in oder to reconstruct the unknown
convolution kernel based on an integral overdetermination.

I The convergence is of first order in time:∥∥K̄n(t)− Kex(t)
∥∥

L2((0,T ))
≈ O(τ).

I Numerical experiments support the theoretically obtained results.
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