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» Q CRY d>1: bounded domain with Lipschitz continuous boundary
=09, final time T.

» Determine the solution u(x, t) and the convolution kernel K(t) such that

Ou—V-(VBW)+K*u = 7, inQx][0,T],
—Vpw)-v = g, onl x|0,T],
u(x,0) = w(x), inQ,

when an additional global measurement

/ u(x, t)dx = m(t), te|0, T]
Q

is satisfied.
» The sign '’ denotes the convolution product

(K % u(x)) (£) ::/0 K(t—s)u(x,s)ds,  (x,t) € Qx [0, T].
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» Such type of integro-differential problems arise in the theory of reactive
contaminant transport [Delleur, 1999] and in the modelling of phenomena
in viscoelasticity [MacCamy, 1977].

> [De Staelen and Sloditka, 2015] studied the reconstruction of K based on
the same measurement in the semilinear equation
t
Do — Au + K(£)h +/ K(t— s)u(x,s) ds = f(u, V).
0

» Main idea: measure the equation into space, i.e.

m(£) + /r g(t) + K(1) /Q h(t) + (K m)(t) = /Q F(ult), Vu(t)).
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The measured problem

m'(t) + /rg(t) + K(t) /Q h(t) 4+ (K * m)(t) = /Q f(u(t),Vu(t))  (MP)
together with the variational formulation for ¢ € H'()

(0ru,9) + (Vu, Vo) + (g, ¢)r + K(£)(h, ) + (K x u, ) = (f(u, Vu), ¢) (P)

represent the variational formulation of the inverse problem.
» The inverse problem is reformulated into a direct problem!

» Existence and uniqueness of a solution is proved using Rothe’s method
[Katur, 1985].

» Uniform boundedness of K is crucial into the analysis (to obtain global in
time solvability).
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Uniform boundedness of K follows from (MP) and Grénwall’s lemma:

K() \ G

< \ /Q f(u(t),w(r»\ 1K = m)(8)] + |m'(8)] + ’ /r g(t)

t
< C+/ |K(s)| ds
0
if f: R — R is uniformly bounded, g € C ([0, T],L*(T)) and m € C*([0, T]).

= K(t) < C if min_ |(h(t),1)] > w > 0.
max K(2) i min [(h(t).1)] >

> In this talk, the crucial K(t)h-term is skipped out of the PDE. What are
the implications?
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» Measure the problem:

' (t) + /r g(t) + (K + m)(t) = /Q 7,

» |dea: take the time derivative of this equation to obtain K(t) seperately, i.e.
m"(t) + /8tg(t) + K(t)m(0) + (K * m')(t) = 8t/ 7.
r Q
» What is possible for ‘7' 7?

> fhal.

We make a safe choice for the right-hand side ‘7', i.e.

v

/t F(u(-,s)) ds.
0

» We have made the problem nonlinear by introducing the possible nonlinear
function 8 : R — R.
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Determine the solution u(x,t) and the convolution kernel K(t) such that

t

Oru—V - (VB(u)) + K*u f(u(-,s)) ds+ F, in Qx [0, T],
—VB(u)-v g(,) onTl x [0, T],
U(X, O) = Uo(X), in €,
/ u(x, t)dx
Q

m(t).
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The coupled direct variational problem is given by
m”(£)+ K(£)m(0) + (K m')(t) = (f(u(t)),1)+(F'(t), 1) = (&'(t), 1) (MP2)
and
(Oeu(t), ) + (VB(u(t)), Vo) + ((K x u)(t), ¢)
= </0t f(u(s)) ds,<f>> +(F(t),0) — (g(t),9)r . (P2)

where F'(t) := 0;F(t) and g'(t) := 9:g(t).
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» Rothe’s method [Kagur, 1985]: divide [0, T] into n € N equidistant
subintervals (t;_1, t;] for t; = iT, where 7 = T /n < 1 and for any function z

zi =~ z(t;), Oez(tj) m 0z = 2222,
» Based on (P2) and (MP2), the following decoupled system for
approximating the unknowns (K, u) at time t;, 1 </ < n, is proposed

(dui, @) + (VB(ui), Vo) + (Z Kiti—k, d))

k=1

i—1
— (Z f(Uk)T,¢> + (Fi,¢) — (i, ¢)r (DP2i)

k=0

and

mi + Kim(0)+ > Kim 7 = (f(ui—1),1)+ (F/,1) — (g, 1) . (DMP2i)
k=1
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We assume that
» f: R — R bounded,
» 3 :R — R is everywhere differentiable and satisfies

8(0) =0,
0<ﬂ0 S/B/(s)gﬁla VSER,

v

u € L3(Q),

g € C ([0, T],L%()),

F e C ([0, T],L%(Q)),

m € C2 ([0, T]) with m(0) # 0.
and refer to these conditions as (x).

v

v

v
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|m(0)|

» Set 7 mm{ 3 [m(0)]

inequality that

}. Then for any 7 < 79, we get by the triangle

Im(0) + m(©)7] > [m(0)] - |m(©)] 7 > T - g,

For each i € {1,..., n}, the following recursive deduction can be made:
> Let ug,...,ui_1 € L2(Q) and Ki,...,Ki_1 € R be given.
» Then, (DMP2/) implies the existence of a unique K; € R such that

K: [m(0) + m’(0)7]

= (f(ui-1),1) + (F/,1) — (&, 1) ZKkm, KT —m

» Monotone operator theory gives the existence of a unique solution
u; € H(Q) to problem (DP2/) when the assumptions (x) are fulfilled
[Vainberg, 1973].
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A priori estimates

Lemma

Let (%) be satisfied. Then, there exists a positive constant C such that for any
T < To holds that
max |K;| < C.

i=1,...,n

Lemma

Let (x) be satisfied. Then there exist positive constants C such that for any
T < 19 holds that

2 2
max Jul|* + ) IVA(u)|*r < €
i=1

1<<n
and

max [|3(y)|| < € and Z ””i”al(g)T <C.
i=1

0y<n
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A priori estimates

Lemma

Let () be satisfied and uy € H*(Q). Then there exist positive constants C such
that for any T < 19 holds that

n J
> oulf -+ e IVBG)I"+ 3 I98(u) ~ VBl < €

i=1
and

J
max [|ujllypqy < € and Z [Vu; — Vui|* < C.

1<j<n -
i=1
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Rothe functions

» Piecewise constant and linear in time spline of the solutions u;,i =1,...,n.

o,
u,
o—e
eoe o
o—=e
o—e
o—e
e
| 4 0 1 2 3 n-2 n-1 n step 0 n-2 n-1 n step
(a) (b)

Figure : Rothe's piecewise constant function u, (a) and Rothe's piecewise linear

in time function u, (b).

» Similarly, we define K,,, F,, F'1, 8, &0 M n and m”,,.
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Using these so-called Rothe's functions, (DP2/) and (DMP2i) can be rewritten
on the whole time interval as ([t], =/ and |t|, =i — 1 when t € (tj_1, t]])

[el-
(Orun(t), 8) + (VB(Un(1)), Vo) + | D Knlt)un(t — )7,
[t]- B
= [ Y @), ¢ | + (Fa(t),0) — (8a(1), 0)r
k=0

and

[t]-
mo(t) + Kn(t)m(0) + > Kn(ti)m'n(t — ti)7
k=1

= (f(ﬁn(t - T))7 1) + (ﬁn(t% 1) - (En(t)7 l)r .
We want to pass to the limit n — co (term by term).
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Theorem (Existence and uniqueness)

Suppose that the conditions (x) are fulfilled. Moreover, assume that uy € Hl(Q)
and let f : R — R be global Lipschitz continuous. Then, there exists a unique
weak solution (K, u) to the problem (P2)-(MP2), where K € L?(0, T) and

ue C ([0, T],L%(Q)) L2 ((0, T),HY(RQ)) with d,u € L*((0, T),L*(R)).

Proof.

Uses Lemma 1.3.13 of [Katur, 1985] (compactness argument: H!(Q) << L2(Q2)). Note that by the a
priori estimates holds that for every t € [0, T]

tlr T[t]+
Kn(t)Un(t — ti)T = (Ko * Tn)(t) + / . Kn(s)Un(t — s) ds = (K, * Tp)(t) + O (7)

x
1

1
and

Ltl+ £ ' '
f(dn 7 = f(u)T f(u,(s)) ds — f(u,(s)) ds = f(un(s)) ds+ O (7).
> (@) (0)+/0(()) /fm,((» /0((» +0(n)
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> We have u, — uin C ([0, T],L*(R)), @, — uin L* ((0, T),L*(%)).

» Only weak convergence of the Rothe functions K, to K is proved up to
now (K, — K). Extra assumptions are needed for the strong convergence.

Lemma

Let the assumptions (x) be fulfilled and uy € H*(Q). Moreover, assume that
VB(uo) € H(div; Q), g € C* ([0, T],L*(T)), F € C* ([0, T],L*(Q)),

m e C3([0, T]) and f : R — R is global Lipschitz continuous. Then, there exist
positive constants C and tq such that for all 7 < 19 holds that

n

> I8KilPr < C.

i=1

By the Arzela-Ascoli theorem [Rudin, 1987, Theorem 11.28], {K,} converges
uniformly on [0, T] to K, i.e. K € C([0, T]).
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Error estimates (speed of convergence)

Theorem

Let the assumptions of the previous lemma be fulfilled. Then there exist positive
constants C and 1y such that for all T < 7o holds that

| Rt - k@ de+ [ ) - tl? < e
0 0

» The convergence of the numerical approximations (K ,, T,) to the exact
solution (K, u) is optimal in time.
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Numerical experiment: setting

» Q=[0,1].

» The forward coupled problems in this procedure are discretized in time
according to the backward Euler method with timestep 2/ T,j =2,...,8.

> At each time-step, the resulting elliptic problems are solved numerically by
the finite element method (FEM) using first order (P1-FEM) Lagrange
polynomials for the space discretization. A fixed uniform mesh consisting of
100 intervals is used.

» At each timestep, the nonlinearity V3(u;) is approximated by 3’ (u;—1)Vu;.
» The error on K is denoted by

-
B (1) = [ Ka(t) - Ku(O) dt.
0
» Implementation: in FEniCS [Logg et al., 2012].
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[ linear

T=1, f(s)=p(s)=s+1, m(t)=4/3t>+4/3t+4/3,
Uex(,8) = (L4t +12) (14+x%),  Kex(t) = exp(t)

log, Ex.. = 1.7875log, T — 1.2878

Kernel K(t)

0 0.2 0.4 0.6 0.8 1

exact soluliog
p

(a) Kernel reconstruction

log, Ech

-8 -7 -6

-5 -4 -3 -2
log, T

(b) Error Ex_ ()
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: :
£ nonlinear

T=1% f(s)=s5+50(s)=s"+s,

T+t 4283 4wt 22+ w2t +2
m(t): = ;

Uex(x,t) = (L+t+ 2+ ) (L +sin(rx)), Kex(t) =sin(2nt)
log, Ex_, = 2.0478log, T + 0.2911

15
-6} -
-8| -
< % -10 -
g P =12 .
20 . -
O -
~16]
-0.5
0 0.1 0.2 0.3 0.4 0.5 -18
t
| 5 -9 -8 -7 -6 -5 -4 -3
exact solutior T =27 —5—
‘ s 127 —— log, T

(c) Kernel reconstruction (d) Error Ex_ (7). 225
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Conclusion:

» A nonlinear parabolic problem of second order with an unknown solely
time-dependent convolution kernel is considered.

» A numerical scheme based on Backward Euler's method together with a
time-discrete convolution is presented in oder to reconstruct the unknown
convolution kernel based on an integral overdetermination.

» The convergence is of first order in time:
HR"(t) - Kex(t)HL?((o,T)) ~ O(7).

» Numerical experiments support the theoretically obtained results.
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