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Three types of thermoelasticity

I Ω ⊂ Rd , d ∈ {1, 2, 3}: isotropic and homogeneous thermoelastic body
I Γ = ∂Ω: Lipschitz continuous boundary
I T : final time
I Coupled thermoelastic system [Muñoz Rivera and Qin, 2002]: specific

formulas are used in the study of thermoelasticity to describe how objects
change in shape (displacement vector u) with changes in temperature θ
from the reference value T0 > 0 (in Kelvin){

ρ∂ttu− α∆u− β∇ (∇ · u) + γ∇θ = p in Ω× (0,T )
ρCs∂tθ − κ∆θ − K ∗∆θ + T0γ∇ · ∂tu = h in Ω× (0,T )

I p: load (body force) vector; h: heat source
I The Lamé parameters α and β, the mass density ρ, the specific heat Cs ,

the coupling (absorbing) coefficient γ and the thermal coefficient κ are
assumed to be positive constants

I The sign ‘∗’ denotes the convolution product

(K ∗ θ) (x, t) :=
∫ t

0
K (t − s)θ(x, s)ds, (x, t) ∈ Ω× (0,T )
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Three types of thermoelasticity

Types of thermoelasticity


ρ∂ttu− α∆u− β∇ (∇ · u) + γ∇θ = p in Ω× (0,T );
ρCs∂tθ − κ∆θ − K ∗∆θ + T0γ∇ · ∂tu = h in Ω× (0,T );

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω

Three types of thermoelasticity:
I type-I: K = 0 and κ 6= 0:

ρCs∂tθ−κ∆θ + T0γ∇ · ∂tu = h

I type-II: K 6= 0 and κ = 0:

ρCs∂tθ−K ∗∆θ + T0γ∇ · ∂tu = h

I type-III: K 6= 0 and κ 6= 0:

ρCs∂tθ−κ∆θ − K ∗∆θ + T0γ∇ · ∂tu = h

Inverse source problems for (an-)isotropic thermoelasticity are studied
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Literature: inverse source problems for thermoelastic systems

I

[Bellassoued and Yamamoto, 2011] investigated an in-
verse heat source problem for type-I thermoelasticity:
they determine h(x) by measuring

u|ω×(0,T ) and θ(·, t0),

where ω is a subdomain of Ω such that Γ ⊂ ∂ω and
t0 ∈ (0,T )

I [Wu and Liu, 2012] studied an inverse source problem of determining p(x)
for type-II thermoelasticity from a displacement measurement

u|ω×(0,T )

I Using a Carleman estimate, a Hölder stability for the inverse source
problem is proved in both contributions, which implies the uniqueness of a
solution to the inverse source problem

I Gap: no numerical scheme is provided to recover the unknown source
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Problem (A)
Can we find a unique p(x) and/or h(x) from the additional final in time measurements

u(x,T ) = ξT (x) and/or θ(x,T ) = ζT (x)

for all types of thermoelasticity and can we provide a numerical scheme?

Goal: The way of retrieving the unknown source is not by the minimization of a
certain cost functional (which is typical for IPs), but by using an alternative
technique
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Mathematical analysis

Solution (Problem (A))
Up to now, using our approach, it is possible to recover p(x) uniquely for all types of thermoelasticity from
the additional final in time measurement (the condition of final overdetermination)

u(x,T ) = ξT (x),

in the presence of a damping term g (∂t u) in the hyperbolic equation of the thermoelastic system, i.e.
ρ∂tt u + g (∂t u)− α∆u− β∇ (∇ · u) + γ∇θ = p(x) in Ω× (0,T );

ρCs∂tθ − κ∆θ − K ∗∆θ + T0γ∇ · ∂t u = 0 in Ω× (0,T );
u(x, t) = 0 on Γ× (0,T );
θ(x, t) = 0 on Γ× (0,T );

u(x, 0) = ∂t u(x, 0) = 0, θ(x, 0) = 0 in Ω,

I A damping term in thermoelastic systems is also considered in [Qin, 2008,
Chapter 9], [Kirane and Tatar, 2001], [Oliveira and Charão, 2008],...

See: Van Bockstal, K. and Slodička, M. Recovery of a space-dependent vector
source in thermoelastic systems.
Inverse Problems in Science and Engineering, 2015, 23, 956–968
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Mathematical analysis

The results can be extended to anisotropic thermoelastic
systems


%(x)∂tt u + g (∂tu) + Leu + div(B(x)θ) = p(x) + r, (x, t) ∈ Ω× (0,T ),
%(x)Cs (x)∂tθ −∇ · (K(x)∇θ)− (K ∗∆θ) + T0B(x) : ∇∂tu = h, (x, t) ∈ Ω× (0,T ),
u(x, t) = 0, (x, t) ∈ Γ× (0,T ),
θ(x, t) = 0, (x, t) ∈ Γ× (0,T ),

together with the initial conditions

u(x, 0) = 0, ∂tu(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω.

As before, the goal is to determine p(x) from

uT (x) := u(x,T ) = ξT (x), x ∈ Ω.

See: Van Bockstal, K. and Marin, L. Recovery of a space-dependent vector
source in anisotropic thermoelastic systems.
Computer Methods in Applied Mechanics and Engineering, 2017, 321, 269–293
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Mathematical analysis

I Overview results (in both papers):
I A variational approach is used, which implies uniqueness for all types of

thermoelasticity if g : Rd 7→ Rd is strictly monotone increasing and K is
strongly positive definite

I if g is linear (i.e. g = gI with g > 0), then
I A stable iterative algorithm is proposed to recover the unknown vector source

p by extending the iterative procedure of [Johansson and Lesnic, 2007] for the
heat equation to thermoelastic systems, but without using an adjoint problem

I It is possible to consider the case of non-homogeneous Dirichlet boundary
conditions and initial conditions

I Also additional given source terms can be considered
I In the following: more details are given for isotropic thermoelasticity of

type-III
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Mathematical analysis

Theorem (Well-posedness of the direct problem (given general p))
Assume that p : (0,T ]→ L2(Ω) belong to L2

(
(0,T ), L2(Ω)

)
, u0(x) ∈ H1(Ω), u1(x) ∈ L2(Ω) and

θ0 ∈ H1(Ω). Assume that any of the following conditions holds for the kernel K : (0,T ]→ R:

(i) K ′(t) 6≡ 0 and (−1)j K (j)(t) > 0, t > 0, j = 0, 1, 2, i.e. K is strongly positive definite;

(ii) K ∈ L1(0,T ) s.t.

∫ T

0

|K(t)| dt 6 κ;

(iii) ∃ C > 0 s.t. max
t∈[0,T ]

|K(t)| 6 C.

Then, the variational problem has a unique solution (u, θ) such that
u ∈ C

(
[0,T ], L2(Ω)

)
∩ L2
(

(0,T ),H1
0(Ω)
)

, ∂t u ∈ C
(

[0,T ], L2(Ω)
)

, ∂tt u ∈ L2
(

(0,T ),H1
0(Ω)∗

)
,

θ ∈ C
(

[0,T ], L2(Ω)
)
∩ L2
(

(0,T ),H1
0(Ω)
)

and ∂tθ ∈ L2
(

(0,T ),H1
0(Ω)∗

)
.

Moreover, when u0(x) = 0, u1(x) = 0, θ0 = 0, h = 0 and p = p(x), the following estimate holds

max
t∈[0,T ]

{
‖∂t u(t)‖2 + ‖u(t)‖2

H1
0(Ω) + ‖θ(t)‖2

}
+

∫ T

0

‖∇θ(t)‖2 dt 6 C ‖p‖2
.

I See [Lions and Magenes, 1972] and [Van Bockstal and Marin, 2017,
Theorem 4.1]
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Sketch of the proof of uniqueness for type-III thermoelasticity

Coupled variational formulation: find 〈u(t), θ(t), p〉 ∈ H1
0(Ω)× H1

0(Ω)× L2(Ω) such
that u(x,T ) = ξT (x) and

ρ (∂ttu,ϕ) + (g (∂tu) ,ϕ) + α (∇u,∇ϕ) + β (∇ · u,∇ · ϕ) +γ (∇θ,ϕ) = (p,ϕ) ,
ρCs (∂tθ, ψ) + κ (∇θ,∇ψ) + (k ∗ ∇θ,∇ψ)−γT0 (∂tu,∇ψ) = 0,

for all ϕ ∈ H1
0(Ω) and ψ ∈ H1

0(Ω) and a.a. t ∈ (0,T ].

Theorem (Uniqueness)
Let 〈u1, θ1, p1〉 and 〈u2, θ2, p2〉 satisfy the thermoelastic system. Set u = u1 − u2,
p = p1 − p2 and θ = θ1 − θ2 such that u(x, 0) = 0, u(x,T ) = 0, ∂tu(x, 0) = 0 and
θ(x, 0) = 0. Then p = 0 a.e. in Ω and 〈u, θ〉 = 〈0, 0〉 a.e. in Ω× (0,T ).

I Subtract, equation by equation, the variational formulation corresponding with
the different solutions

I We want to add up both resulting equation such that the mixed term is cancelled
out

I A good choice of the test functions is needed:

ϕ = ∂tu(t) and ψ = θ(t)
T0

11 / 30



Thermoelastic systems Problem Uniqueness Algorithm Numerical Experiments Conclusion and further research

Sketch of the proof of uniqueness for type-III thermoelasticity

I Another trick: integrate in time over (0,T ) such that∫
Ω

∫ T

0
p(x) · ∂tu(x, t)dt =

∫
Ω

[p(x) · u(x,T )− p(x) · u(x, 0)] = 0

I We obtain that

ρ

2 ‖∂tu(T )‖2 +
∫ T

0
(g (∂tu1)− g (∂tu2) , ∂tu1 − ∂tu2)︸ ︷︷ ︸

?

+ ρCs

2T0
‖θ(T )‖2 + κ

T0

∫ T

0
‖∇θ‖2 + 1

T0

∫ T

0
(K ∗ ∇θ,∇θ)︸ ︷︷ ︸

?

= 0

I We make distinction based on the different assumptions on K
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Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for a Positive Definite Convolution Kernel I

I Assume that the twice differentiable function K : (0,T ]→ R satisfies

K ′(t) 6≡ 0 and (−1)jK (j)(t) > 0, t > 0, j = 0, 1, 2,

i.e. K is strongly positive definite∫ T

0
φ(t)(K ∗ φ)(t)dt > C0

∫ T

0
(K ∗ φ)2 (t)dt, ∀T > 0,∀φ ∈ L1

loc(Ω)

I This implies∫ T

0
(g (∂tu1)− g (∂tu2) , ∂tu1 − ∂tu2) +

∫ T

0
‖∇θ‖2 6 0
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Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for a Positive Definite Convolution Kernel II

I Assume g componentwise strictly monotone increasing. Then ut = 0 a.e.
in Ω× (0,T ). Therefore,

u(x, 0) = 0 ⇒ u(x, t) = 0 a.e. in Ω× (0,T )

I θ = 0 on ∂Ω ⇒ θ = 0 a.e. in Ω× (0,T )
I This implies that

(p,ϕ) = 0, ∀ϕ ∈ H1
0(Ω).

From this, we conclude that p = 0 in L2(Ω)
I Examples:

I E.g. K(t) = t−α, t ∈ (0,T ], with 0 < α < 1 (singular kernel)
I E.g. K(t) = exp(−t), t ∈ [0,T ]
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Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for K ∈ L1(0,T ) s.t.
∫ T

0
|K (t)| dt 6 κ.

Young’s inequality for convolutions:

‖f ∗ g‖r 6 ‖f ‖p ‖g‖q ,
1
p

+
1
q

=
1
r

+ 1, 1 6 p, q, r 6∞. (1)

Applying this inequality, one obtains∣∣∣∣∫ T

0

((K ∗ ∇θ)(t),∇θ(t)) dt

∣∣∣∣ =

∣∣∣∣∫
Ω

∫ T

0

(K ∗ ∇θ) (x, t)∇θ(x, t) dtdx

∣∣∣∣
6

∫
Ω

∣∣∣∣∫ T

0

(K ∗ ∇θ) (x, t)∇θ(x, t) dt

∣∣∣∣ dx

6

∫
Ω

√∫ T

0

(K ∗ ∇θ)2 (x, t) dt

√∫ T

0

∇θ(x, t)2 dt dx

(1)
6

∫
Ω

(∫ T

0

|K(t)| dt

)√∫ T

0

∇θ(x, t)2 dt

√∫ T

0

∇θ(x, t)2 dt dx

6

(∫ T

0

|K(t)| dt

)∫ T

0

‖∇θ(t)‖2 dt,
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Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for a bounded convolution kernel
∣∣∣∣∣
∫ T

0

(∫ t

0
K (t − s)∇θ(s)ds,∇θ(t)

)
dt

∣∣∣∣∣
6 Cε

∫ T

0

∥∥∥∥∫ t

0
K (t − s)∇θ(s)ds

∥∥∥∥2

dt + ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε
∫ T

0

(∫ t

0
|K (t − s)| ‖∇θ(s)‖ds

)2

dt + ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε
∫ T

0

(∫ t

0
|K (t − s)|2ds

)(∫ t

0
‖∇θ(s)‖2 ds

)
dt + ε

∫ T

0
‖∇θ(t)‖2 dt

6 Cε
∫ T

0

(∫ t

0
‖∇θ(s)‖2 ds

)
dt + ε

∫ T

0
‖∇θ(t)‖2 dt.

Fixing ε sufficiently small and applying Grönwall’s lemma implies that
u = p = 0 and θ = 0.
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For linear systems

Algorithm for finding the source term if g is linear
(i) Choose an initial guess p0 ∈ L2(Ω). Let 〈u0, θ0〉 be the solution to the

thermoelastic system with p = p0

(ii) Assume that pk and 〈uk , θk〉 have been constructed. Let 〈wk , ηk〉 solve the
thermoelastic system with p(x) = uk (x,T )− ξT (x)

(iii) Define
pk+1(x) = pk (x)− ωwk (x,T ), x ∈ Ω

where ω > 0 (relaxation parameter), and let 〈uk+1, θk+1〉 solve the
thermoelastic system with p = pk+1

(iv) The procedure continues by repeating steps (ii) and (iii) until a desired
level of accuracy is achieved (see next slide)

I This is a Landweber-Fridmann iteration scheme [Fridman, 1956].
I The proof of convergence can be found in

[Van Bockstal and Slodička, 2015, Theorem 3.3] for isotropic materials and
in [Van Bockstal and Marin, 2017, Theorem 4.2]
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For linear systems

Stopping criterion

I Morozov’s discrepancy principle is used [Morozov, 1966]
I The case is considered when there is some error in the additional

measurement, i.e.
‖ξT − ξ

e
T‖ 6 e,

where e(ẽ) depends on the noise level with magnitude ẽ > 0
I The solutions pe

k ,ue
k and θe

k at iteration k are obtained by using the
algorithm

I The discrepancy principle suggests to finish the iterations at the smallest
index k = k(e, ω) for which

Ek,uT =
∥∥∥ue

k (·,T )− ξ̃
e
T

∥∥∥ 6 e
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Numerical experiment: setting

I 1D linear model for isotropic type-I (K = 0) and type-III thermoelasticity is
considered

I Ω = [0, 1], T = 1
I copper alloy: shear modulus G = 4.8× 1010 N/m2, Poisson’s ratio ν = 0.34,
αT = 16.5× 10−6 1/K, κ = 401 W/mK, ρ = 8960 kg/m3 and Cs = 385 J/kgK

I g = 2× 108, T0 = 293K

I α = µ, β = µ+ λ with λ = 2νG
1− 2ν and µ = G

I Three choices for the convolution kernel are made, namely K = 0,
K = exp(−t) and K = 1/

√
t
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Numerical experiment: setting

I The forward coupled problems in this procedure are discretized in time
according to the backward Euler method with timestep 0.0005

I At each time-step, the resulting elliptic coupled problems are solved
numerically by the finite element method (FEM) using first order
(P1-FEM) Lagrange polynomials for the space discretization. A fixed
uniform mesh consisting of 200 intervals is used

I

The finite element library DOLFIN [Logg and Wells, 2010,
Logg et al., 2012b] from the FEniCS project
[Logg et al., 2012a] is used
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Results of numerical experiments

Exact solution

u(x , t) = (1 + t)2x(x − 1)2 and θ(x , t) = (1 + t)x(1− x)2

p1(x) = 10x(1− x)
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Figure: The exact source p1 and its corresponding numerical solution, retrieved using
various levels of noise in the additional measurement, for various convolution kernels,
namely (a) K = 0, (b) K = exp(−t), and (c) K = 1/

√
t. The relaxation parameter

ω = 10.
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Results of numerical experiments

p2(x) = exp
(
−20(x − 0.5)2)
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Figure: The exact source p2 and its corresponding numerical solution, retrieved using
various levels of noise in the additional measurement, for various convolution kernels,
namely (a) K = 0, (b) K = exp(−t), and (c) K = 1/

√
t. The relaxation parameter

ω = 10.
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Results of numerical experiments

Table: The stopping iteration number k̃ = k(e(ẽ), 10) and the CPU time (mins),
obtained for the experiments with the unknown sources p1 and p2.

p1 p2
ẽ 1% 5% 10% 0.5% 1% 3%

k̃ time k̃ time k̃ time k̃ time k̃ time k̃ time
K = 0 136 94.7 11 8.2 9 6.3 387 327.4 386 327.2 172 60.7

K = exp(−t) 133 138.7 9 10.4 9 9.9 503 538.1 321 416.2 177 111.2
K = 1/

√
t 142 144.3 10 11 8 8.9 491 532.6 390 468.4 206 183.4

Following experiments:

p3(x) =


0 0 6 x 6 1

3
6x − 2 1

3 6 x 6 1
2

4− 6x 1
2 6 x 6 2

3
0 2

3 6 x 6 1

, p4(x) =
{

x(0.5− x)(1− x) 0 6 x 6 1
2

x(x − 0.5)(1− x) 1
2 6 x 6 1

,

p5(x) =

{
0 0 6 x < 1

3
1 1

3 6 x 6 2
3

0 2
3 < x 6 1

, p6(x) = 10x(x − 1)2
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Results of numerical experiments
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Figure: The exact sources p3, p4 and p5 and its numerical approximations for ẽ = 0%
(a,c,e) and for different noise levels (b,d,f). The relaxation parameter ω = 10.
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Results of numerical experiments
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Figure: The exact source p4 and its numerical approximations for ω = 2 (a) and for
ω = 20 (b).

I The results for small noise are similar to the results obtained when ω = 10
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Figure: The exact source p5 and its numerical approximations for ẽ = 1% (a) and for
ẽ = 3% (b) for different values of g . The relaxation parameter ω = 10.
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Figure: The exact source p2 and its numerical approximations for ẽ = 3% for different
values of g . The relaxation parameter ω = 10.
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Figure: The non-symmetric exact source p6 and its numerical approximations (using
ẽ = 3%) for different initial guesses: 0 (a), 6.44x − 12.27x 2 + 5.83x 3 (b),
9.68x − 18.46x 2 + 8.78x 3 (c) and 12.88x − 24.54x 2 + 11.65x 3 (d). The relaxation
parameter ω = 10.
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Figure: The non-symmetric exact source p6 and its numerical approximations for
T = 0.2 (a) and T = 0.5 (b). The relaxation parameter ω = 10.
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Conclusion

I It is possible to recover uniquely an unknown vector source in all types of
damped thermoelastic systems when an additional final in time
measurement of the displacement is measured

I A numerical algorithm in a linear case gives accurate shape recovery
I The algorithm is sensitive to the amount of noise added to the data
I There is a certain limitation of the method with respect to the recovery of

non-symmetric sources
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Future research

I More numerical experiments (e.g. influence of the parameter g on the
results)

I Testing different stopping criteria (up to now, no better results)
I What if g is nonlinear?
I Other inverse problems for thermoelasticity, e.g. the recovery of

time-dependent sources, convolution kernel
I Goal: with numerical scheme!

30 / 30



Thermoelastic systems Problem Uniqueness Algorithm Numerical Experiments Conclusion and further research

References I

Bellassoued, M. and Yamamoto, M. (2011).
Carleman estimates and an inverse heat source problem for the thermoelasticity system.
Inverse Problems, 27(1):015006.

Fridman, V. M. (1956).
Method of successive approximations for a Fredholm integral equation of the 1st kind.
Uspekhi Mat. Nauk, 11(1(67)):233–234.

Johansson, T. and Lesnic, D. (2007).
Determination of a spacewise dependent heat source.
J. Comput. Appl. Math., 209(1):66–80.

Kirane, M. and Tatar, N.-E. (2001).
A nonexistence result to a cauchy problem in nonlinear one dimensional thermoelasticity.
Journal of Mathematical Analysis and Applications, 254(1):71 – 86.

Lions, J. L. and Magenes, E. (1972).
Non-homogeneous boundary value problems and applications, volume 181 of Non-homogeneous
Boundary Value Problems and Applications.
Springer Berlin Heidelberg.

31 / 30



Thermoelastic systems Problem Uniqueness Algorithm Numerical Experiments Conclusion and further research

References II
Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012a).
Automated Solution of Differential Equations by the Finite Element Method.
Springer, Berlin, Heidelberg.

Logg, A., Wells, G., and Hake, J. (2012b).
DOLFIN: a C++/Python Finite Element Library, chapter 10.
Springer, Berlin, Heidelberg.

Logg, A. and Wells, G. N. (2010).
DOLFIN: Automated Finite Element Computing.
ACM Trans. Math. Software, 37(2):28.

Morozov, V. A. (1966).
On the solution of functional equations by the method of regularization.
Soviet Math. Dokl., 7:414–417.
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