

The identification of a space-dependent load source in anisotropic thermoelastic systems

K. Van Bockstal^a, M. Slodička^a and L. Marin^b

^a Research Group NaM², Department of Mathematical Analysis, Ghent University
 ^b Department of Mathematics, Faculty of Mathematics and Computer Science, University of Bucharest
 ^b Institute of Solid Mechanics, Romanian Academy

Equadiff 2017, Bratislava, Slovakia, July 24-28, 2017

Thermoelastic systems OO O	Problem 0000	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments 00 0000000	Conclusion and further research

Outline

Introduction on thermoelastic systems

Three types of thermoelasticity

Literature: inverse source problems for thermoelastic systems

Problem: determination load vector

Mathematical analysis

Uniqueness

Sketch of the proof of uniqueness for type-III thermoelasticity

Algorithm

For linear systems

Numerical Experiments Results of numerical experiments

Conclusion and further research

Thermoelastic systems ●O ○	Problem 0000	Uniqueness 00000	Algorithm 00	Numerical Experiments 00 00000000	Conclusion and further research		
Three types of thermoelasticity							

- ▶ $\Omega \subset \mathbb{R}^d, d \in \{1, 2, 3\}$: isotropic and homogeneous thermoelastic body
- $\Gamma = \partial \Omega$: Lipschitz continuous boundary
- ► T: final time
- Coupled thermoelastic system [Muñoz Rivera and Qin, 2002]: specific formulas are used in the study of thermoelasticity to describe how objects change in shape (displacement vector u) with changes in temperature θ from the reference value T₀ > 0 (in Kelvin)

$$\begin{cases} \rho \partial_{tt} \mathbf{u} - \alpha \Delta \mathbf{u} - \beta \nabla (\nabla \cdot \mathbf{u}) + \gamma \nabla \theta &= \mathbf{p} \quad \text{in } \Omega \times (0, T) \\ \rho C_{\mathbf{s}} \partial_t \theta - \kappa \Delta \theta - K * \Delta \theta + T_0 \gamma \nabla \cdot \partial_t \mathbf{u} &= h \quad \text{in } \Omega \times (0, T) \end{cases}$$

- **p**: load (body force) vector; *h*: heat source
- The Lamé parameters α and β, the mass density ρ, the specific heat C_s, the coupling (absorbing) coefficient γ and the thermal coefficient κ are assumed to be positive constants
- The sign '*' denotes the convolution product

$$(K * \theta)(\mathbf{x}, t) := \int_0^t K(t - s) \theta(\mathbf{x}, s) \mathrm{d}s, \qquad (\mathbf{x}, t) \in \Omega \times (0, T)$$

Thermoelastic systems ○● ○	Problem 0000	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments 00 0000000	Conclusion and further research 00 0		
Three types of thermoelasticity							

Types of thermoelasticity

$$\begin{cases} \rho \partial_{tt} \mathbf{u} - \alpha \Delta \mathbf{u} - \beta \nabla (\nabla \cdot \mathbf{u}) + \gamma \nabla \theta &= \mathbf{p} & \text{in } \Omega \times (0, T);\\ \rho C_s \partial_t \theta - \kappa \Delta \theta - \mathcal{K} * \Delta \theta + \mathcal{T}_0 \gamma \nabla \cdot \partial_t \mathbf{u} &= h & \text{in } \Omega \times (0, T);\\ \mathbf{u}(\mathbf{x}, 0) = \overline{\mathbf{u}}_0(\mathbf{x}), \quad \partial_t \mathbf{u}(\mathbf{x}, 0) = \overline{\mathbf{u}}_1(\mathbf{x}), \quad \theta(\mathbf{x}, 0) &= \overline{\theta}_0(\mathbf{x}) & \text{in } \Omega \end{cases}$$

Three types of thermoelasticity:

• type-I: K = 0 and $\kappa \neq 0$:

$$\rho C_{s} \partial_{t} \theta - \kappa \Delta \theta + T_{0} \gamma \nabla \cdot \partial_{t} \mathbf{u} = h$$

• type-II: $K \neq 0$ and $\kappa = 0$:

$$\rho C_{s} \partial_{t} \theta - K * \Delta \theta + T_{0} \gamma \nabla \cdot \partial_{t} \mathbf{u} = h$$

• type-III: $K \neq 0$ and $\kappa \neq 0$:

$$\rho C_{\mathsf{s}} \partial_t \theta - \kappa \Delta \theta - K * \Delta \theta + T_0 \gamma \nabla \cdot \partial_t \mathbf{u} = h$$

Inverse source problems for (an-)isotropic thermoelasticity are studied

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research			
00 ●	0000	00000	00	00 0000000	000			
literature: inverse source problems for thermoelastic systems								

[Bellassoued and Yamamoto, 2011] investigated an inverse heat source problem for type-I thermoelasticity: they determine h(x) by measuring

$$\mathbf{u}_{|\omega \times (0,T)}$$
 and $\theta(\cdot, t_0)$,

where ω is a subdomain of Ω such that $\Gamma \subset \partial \omega$ and $t_0 \in (0, T)$

 [Wu and Liu, 2012] studied an inverse source problem of determining p(x) for type-II thermoelasticity from a displacement measurement

$$\mathbf{u}_{|\omega \times (0,T)|}$$

- Using a Carleman estimate, a Hölder stability for the inverse source problem is proved in both contributions, which implies the uniqueness of a solution to the inverse source problem
- ► Gap: no numerical scheme is provided to recover the unknown source

00 0000 0000 00 00 00 0 0 00000000	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
	00	0000	00000	00	00 0000000	000

Problem (A)

Can we find a unique $\mathbf{p}(\mathbf{x})$ and/or $h(\mathbf{x})$ from the additional final in time measurements

$$\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x})$$
 and/or $\theta(\mathbf{x}, T) = \zeta_T(\mathbf{x})$

for all types of thermoelasticity and can we provide a numerical scheme?

Goal: The way of retrieving the unknown source is not by the minimization of a certain cost functional (which is typical for IPs), but by using an alternative technique

Thermoelastic systems	Problem ●000	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments	Conclusion and further research OOO
0				00000000	

Mathematical analysis

Solution (Problem (A))

Up to now, using our approach, it is possible to recover $\mathbf{p}(\mathbf{x})$ uniquely for all types of thermoelasticity from the additional final in time measurement (the condition of final overdetermination)

 $\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x}),$

in the presence of a damping term $\mathbf{g}(\partial_t \mathbf{u})$ in the hyperbolic equation of the thermoelastic system, i.e.

$$\begin{array}{ll} \rho \partial_{tt} \mathbf{u} + \mathbf{g} \left(\partial_{t} \mathbf{u} \right) - \alpha \Delta \mathbf{u} - \beta \nabla \left(\nabla \cdot \mathbf{u} \right) + \gamma \nabla \theta &= \mathbf{p}(\mathbf{x}) & \text{in } \Omega \times (0, T); \\ \rho C_{\mathsf{s}} \partial_{t} \theta - \kappa \Delta \theta - K \ast \Delta \theta + T_{0} \gamma \nabla \cdot \partial_{\mathsf{t}} \mathbf{u} &= 0 & \text{in } \Omega \times (0, T); \\ \mathbf{u}(\mathbf{x}, t) &= \mathbf{0} & \text{on } \Gamma \times (0, T); \\ \theta(\mathbf{x}, t) &= 0 & \text{on } \Gamma \times (0, T); \\ \mathbf{u}(\mathbf{x}, \mathbf{0}) &= \partial_{t} \mathbf{u}(\mathbf{x}, \mathbf{0}) = \mathbf{0}, & \theta(\mathbf{x}, \mathbf{0}) &= \mathbf{0} & \text{in } \Omega, \end{array}$$

 A damping term in thermoelastic systems is also considered in [Qin, 2008, Chapter 9], [Kirane and Tatar, 2001], [Oliveira and Charão, 2008],...

<u>See</u>: Van Bockstal, K. and Slodička, M. *Recovery of a space-dependent vector source in thermoelastic systems.* Inverse Problems in Science and Engineering, 2015, 23, 956–968

Thermoelastic systems OO O	Problem O●OO	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments 00 0000000	Conclusion and further research
Mathematical analysis					

The results can be extended to anisotropic thermoelastic systems

$$\begin{cases} \varrho(\mathbf{x})\partial_{tt}\mathbf{u} + \mathbf{g}(\partial_{t}\mathbf{u}) + \mathcal{L}^{e}\mathbf{u} + \operatorname{div}(\mathbb{B}(\mathbf{x})\theta) = \mathbf{p}(\mathbf{x}) + \mathbf{r}, & (\mathbf{x}, t) \in \Omega \times (0, T), \\ \varrho(\mathbf{x})C_{s}(\mathbf{x})\partial_{t}\theta - \nabla \cdot (\mathbb{K}(\mathbf{x})\nabla\theta) - (K * \Delta\theta) + T_{0}\mathbb{B}(\mathbf{x}) : \nabla\partial_{t}\mathbf{u} = h, & (\mathbf{x}, t) \in \Omega \times (0, T), \\ \mathbf{u}(\mathbf{x}, t) = \mathbf{0}, & (\mathbf{x}, t) \in \Gamma \times (0, T), \\ \theta(\mathbf{x}, t) = 0, & (\mathbf{x}, t) \in \Gamma \times (0, T), \end{cases}$$

together with the initial conditions

$$\mathbf{u}(\mathbf{x},0) = \mathbf{0}, \quad \partial_t \mathbf{u}(\mathbf{x},0) = \mathbf{0}, \quad \theta(\mathbf{x},0) = 0, \quad \mathbf{x} \in \Omega.$$

As before, the goal is to determine $\mathbf{p}(\mathbf{x})$ from

$$\mathbf{u}_{\mathcal{T}}(\mathbf{x}) := \mathbf{u}(\mathbf{x}, \mathcal{T}) = \boldsymbol{\xi}_{\mathcal{T}}(\mathbf{x}), \quad \mathbf{x} \in \Omega.$$

<u>See</u>: Van Bockstal, K. and Marin, L. *Recovery of a space-dependent vector source in anisotropic thermoelastic systems.*

Computer Methods in Applied Mechanics and Engineering, 2017, 321, 269-293

Thermoelastic systems 00 0	Problem 00●0	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments 00 0000000	Conclusion and further research OO O
Mathematical analysis					

• Overview results (in both papers):

- A variational approach is used, which implies uniqueness for all types of thermoelasticity if g : ℝ^d → ℝ^d is strictly monotone increasing and K is strongly positive definite
- if **g** is linear (i.e. $\mathbf{g} = g\mathbf{I}$ with g > 0), then
 - A stable iterative algorithm is proposed to recover the unknown vector source p by extending the iterative procedure of [Johansson and Lesnic, 2007] for the heat equation to thermoelastic systems, but without using an adjoint problem
 - It is possible to consider the case of non-homogeneous Dirichlet boundary conditions and initial conditions
 - Also additional given source terms can be considered
- In the following: more details are given for isotropic thermoelasticity of type-III

Thermoelastic systems OO O	Problem 000●	Uniqueness 00000	Algorithm 00	Numerical Experiments 00 00000000	Conclusion and further research

Mathematical analysis

Theorem (Well-posedness of the direct problem (given general **p**)) Assume that $\mathbf{p} : (0, T] \to \mathbf{L}^2(\Omega)$ belong to $\mathbf{L}^2((0, T), \mathbf{L}^2(\Omega))$, $\overline{\mathbf{u}}_0(\mathbf{x}) \in \mathbf{H}^1(\Omega)$, $\overline{\mathbf{u}}_1(\mathbf{x}) \in \mathbf{L}^2(\Omega)$ and $\overline{\theta}_0 \in \mathbf{H}^1(\Omega)$. Assume that any of the following conditions holds for the kernel $K : (0, T] \to \mathbb{R}$: (i) $K'(t) \neq 0$ and $(-1)^{j}K^{(j)}(t) \ge 0, t > 0, j = 0, 1, 2$, i.e. K is strongly positive definite; (ii) $K \in \mathbf{L}^1(0, T)$ s.t. $\int_0^T |K(t)| dt \le \kappa$; (iii) $\exists C > 0$ s.t. $\max_{t \in [0, T]} |K(t)| \le C$. Then, the variational problem has a unique solution (\mathbf{u}, θ) such that

$$\begin{split} \mathbf{u} &\in \mathsf{C}\left([0,\,T],\,\mathbf{L}^2(\Omega)\right) \cap \mathsf{L}^2\left((0,\,T),\,\mathbf{H}_0^1(\Omega)\right),\,\partial_t \mathbf{u} \in \mathsf{C}\left([0,\,T],\,\mathbf{L}^2(\Omega)\right),\,\partial_{tt}\mathbf{u} \in \mathsf{L}^2\left((0,\,T),\,\mathbf{H}_0^1(\Omega)^*\right),\\ \theta &\in \mathsf{C}\left([0,\,T],\,\mathbf{L}^2(\Omega)\right) \cap \mathsf{L}^2\left((0,\,T),\,\mathbf{H}_0^1(\Omega)\right) \text{ and } \partial_t \theta \in \mathsf{L}^2\left((0,\,T),\,\mathbf{H}_0^1(\Omega)^*\right). \end{split}$$

Moreover, when $\overline{u}_0(x) = 0$, $\overline{u}_1(x) = 0$, $\overline{\theta}_0 = 0$, h = 0 and p = p(x), the following estimate holds

$$\max_{t\in[0,T]}\left\{\left\|\partial_t \mathsf{u}(t)\right\|^2+\left\|\mathsf{u}(t)\right\|_{\mathsf{H}^1_0(\Omega)}^2+\left\|\theta(t)\right\|^2\right\}+\int_0^T\left\|\nabla \theta(t)\right\|^2\mathsf{d} t\leqslant C\left\|\mathsf{p}\right\|^2.$$

 See [Lions and Magenes, 1972] and [Van Bockstal and Marin, 2017, Theorem 4.1]

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research			
00	0000	•0 0 00	00	00 0000000	000			
Sketch of the proof of uniqueness for type-III thermoelasticity								

Coupled variational formulation: find $\langle \mathbf{u}(t), \theta(t), \mathbf{p} \rangle \in \mathbf{H}_0^1(\Omega) \times \mathbf{H}_0^1(\Omega) \times \mathbf{L}^2(\Omega)$ such that $\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x})$ and

 $\rho\left(\partial_{tt}\mathbf{u},\boldsymbol{\varphi}\right) + \left(\mathbf{g}\left(\partial_{t}\mathbf{u}\right),\boldsymbol{\varphi}\right) + \alpha\left(\nabla\mathbf{u},\nabla\boldsymbol{\varphi}\right) + \beta\left(\nabla\cdot\mathbf{u},\nabla\cdot\boldsymbol{\varphi}\right) + \gamma\left(\nabla\theta,\boldsymbol{\varphi}\right) = \left(\mathbf{p},\boldsymbol{\varphi}\right),\\\rho C_{s}\left(\partial_{t}\theta,\psi\right) + \kappa\left(\nabla\theta,\nabla\psi\right) + \left(k*\nabla\theta,\nabla\psi\right) - \gamma T_{0}\left(\partial_{t}\mathbf{u},\nabla\psi\right) = \mathbf{0},$

for all $\varphi \in \mathsf{H}_0^1(\Omega)$ and $\psi \in \mathsf{H}_0^1(\Omega)$ and a.a. $t \in (0, T]$.

Theorem (Uniqueness)

Let $\langle \mathbf{u}_1, \theta_1, \mathbf{p}_1 \rangle$ and $\langle \mathbf{u}_2, \theta_2, \mathbf{p}_2 \rangle$ satisfy the thermoelastic system. Set $\mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2$, $\mathbf{p} = \mathbf{p}_1 - \mathbf{p}_2$ and $\theta = \theta_1 - \theta_2$ such that $\mathbf{u}(\mathbf{x}, 0) = \mathbf{0}$, $\mathbf{u}(\mathbf{x}, T) = \mathbf{0}$, $\partial_t \mathbf{u}(\mathbf{x}, 0) = \mathbf{0}$ and $\theta(\mathbf{x}, 0) = 0$. Then $\mathbf{p} = \mathbf{0}$ a.e. in Ω and $\langle \mathbf{u}, \theta \rangle = \langle \mathbf{0}, 0 \rangle$ a.e. in $\Omega \times (0, T)$.

- Subtract, equation by equation, the variational formulation corresponding with the different solutions
- We want to add up both resulting equation such that the mixed term is cancelled out
- A good choice of the test functions is needed:

$$oldsymbol{arphi} = \partial_t {f u}(t)$$
 and $\psi = rac{ heta(t)}{{\mathcal T}_0}$

Thermoelastic systems 00 0	Problem 0000	Uniqueness OOOO	Algorithm 00	Numerical Experiments 00 00000000	Conclusion and further research OOO		
Sketch of the proof of uniqueness for type-III thermoelasticity							

▶ Another trick: integrate in time over (0, *T*) such that

$$\int_{\Omega} \int_{0}^{T} \mathbf{p}(\mathbf{x}) \cdot \partial_{t} \mathbf{u}(\mathbf{x}, t) dt = \int_{\Omega} \left[\mathbf{p}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}, T) - \mathbf{p}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}, 0) \right] = 0$$

We obtain that

$$\frac{\rho}{2} \|\partial_t \mathbf{u}(T)\|^2 + \underbrace{\int_0^T \left(\mathbf{g}\left(\partial_t \mathbf{u}_1\right) - \mathbf{g}\left(\partial_t \mathbf{u}_2\right), \partial_t \mathbf{u}_1 - \partial_t \mathbf{u}_2\right)}_{?} + \frac{\rho C_s}{2T_0} \|\theta(T)\|^2 + \frac{\kappa}{T_0} \int_0^T \|\nabla\theta\|^2 + \underbrace{\frac{1}{T_0} \int_0^T \left(K * \nabla\theta, \nabla\theta\right)}_{?} = 0$$

 \blacktriangleright We make distinction based on the different assumptions on K

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research			
00 0	0000	00000	00	00 0000000	000			
Sketch of the proof of uniqueness for type-III thermoelasticity								

Uniqueness for a Positive Definite Convolution Kernel I

▶ Assume that the twice differentiable function $K : (0, T] \rightarrow \mathbb{R}$ satisfies

$$\mathcal{K}'(t)
ot\equiv 0$$
 and $(-1)^j \mathcal{K}^{(j)}(t) \geqslant 0, \quad t > 0, \quad j = 0, 1, 2,$

i.e. K is strongly positive definite

$$\int_0^T \phi(t)(K * \phi)(t) \mathrm{d}t \ge C_0 \int_0^T (K * \phi)^2(t) \mathrm{d}t, \qquad \forall T > 0, \forall \phi \in \mathsf{L}^1_{\mathrm{loc}}(\Omega)$$

This implies

$$\int_{0}^{T} \left(\mathbf{g} \left(\partial_{t} \mathbf{u}_{1} \right) - \mathbf{g} \left(\partial_{t} \mathbf{u}_{2} \right), \partial_{t} \mathbf{u}_{1} - \partial_{t} \mathbf{u}_{2} \right) + \int_{0}^{T} \left\| \nabla \theta \right\|^{2} \leq 0$$

Thermoelastic systems OO O	Problem 0000	Uniqueness 00●00	Algorithm 00	Numerical Experiments 00 00000000	Conclusion and further research
Sketch of the proof of unique	ness for type-III t	hermoelasticity			

Uniqueness for a Positive Definite Convolution Kernel II

Assume g componentwise strictly monotone increasing. Then u_t = 0 a.e. in Ω × (0, T). Therefore,

$$\mathbf{u}(\mathbf{x},0) = \mathbf{0} \quad \Rightarrow \quad \mathbf{u}(\mathbf{x},t) = \mathbf{0} \text{ a.e. in } \Omega \times (0,T)$$

•
$$\theta = 0$$
 on $\partial \Omega \Rightarrow \theta = 0$ a.e. in $\Omega \times (0, T)$

This implies that

$$(\mathbf{p}, oldsymbol{arphi}) = 0, \qquad orall oldsymbol{arphi} \in \mathbf{H}_0^1(\Omega).$$

From this, we conclude that $\mathbf{p} = \mathbf{0}$ in $\mathbf{L}^2(\Omega)$

Examples:

• E.g.
$$K(t) = t^{-\alpha}$$
, $t \in (0, T]$, with $0 < \alpha < 1$ (singular kernel)

• E.g. $K(t) = \exp(-t), t \in [0, T]$

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00	0000	00000	00	00 0000000	000

Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for $K \in L^1(0, T)$ s.t. $\int_0^T |K(t)| dt \leqslant \kappa$.

Young's inequality for convolutions:

$$\|f * g\|_{r} \leq \|f\|_{p} \|g\|_{q}, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1, \quad 1 \leq p, q, r \leq \infty.$$
 (1)

Applying this inequality, one obtains

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00	0000	00000	00	00000000	000

Sketch of the proof of uniqueness for type-III thermoelasticity

Uniqueness for a bounded convolution kernel

$$\begin{aligned} \left| \int_{0}^{T} \left(\int_{0}^{t} K(t-s) \nabla \theta(s) \mathrm{d}s, \nabla \theta(t) \right) \mathrm{d}t \right| \\ &\leqslant C_{\varepsilon} \int_{0}^{T} \left\| \int_{0}^{t} K(t-s) \nabla \theta(s) \mathrm{d}s \right\|^{2} \mathrm{d}t + \varepsilon \int_{0}^{T} \| \nabla \theta(t) \|^{2} \mathrm{d}t \\ &\leqslant C_{\varepsilon} \int_{0}^{T} \left(\int_{0}^{t} |K(t-s)| \| \nabla \theta(s) \| \mathrm{d}s \right)^{2} \mathrm{d}t + \varepsilon \int_{0}^{T} \| \nabla \theta(t) \|^{2} \mathrm{d}t \\ &\leqslant C_{\varepsilon} \int_{0}^{T} \left(\int_{0}^{t} |K(t-s)|^{2} \mathrm{d}s \right) \left(\int_{0}^{t} \| \nabla \theta(s) \|^{2} \mathrm{d}s \right) \mathrm{d}t + \varepsilon \int_{0}^{T} \| \nabla \theta(t) \|^{2} \mathrm{d}t \\ &\leqslant C_{\varepsilon} \int_{0}^{T} \left(\int_{0}^{t} \| \nabla \theta(s) \|^{2} \mathrm{d}s \right) \mathrm{d}t + \varepsilon \int_{0}^{T} \| \nabla \theta(t) \|^{2} \mathrm{d}t. \end{aligned}$$

Fixing ε sufficiently small and applying Grönwall's lemma implies that $\mathbf{u} = \mathbf{p} = \mathbf{0}$ and $\theta = 0$.

Thermoelastic systems OO O	Problem 0000	Uniqueness 00000	Algorithm ●O	Numerical Experiments 00 0000000	Conclusion and further research 00 0
For linear systems					

Algorithm for finding the source term if g is linear

- (*i*) Choose an initial guess $\mathbf{p}_0 \in \mathbf{L}^2(\Omega)$. Let $\langle \mathbf{u}_0, \theta_0 \rangle$ be the solution to the thermoelastic system with $\mathbf{p} = \mathbf{p}_0$
- (*ii*) Assume that \mathbf{p}_k and $\langle \mathbf{u}_k, \theta_k \rangle$ have been constructed. Let $\langle \mathbf{w}_k, \eta_k \rangle$ solve the thermoelastic system with $\mathbf{p}(\mathbf{x}) = \mathbf{u}_k(\mathbf{x}, T) \boldsymbol{\xi}_T(\mathbf{x})$

(iii) Define

$$\mathbf{p}_{k+1}(\mathbf{x}) = \mathbf{p}_k(\mathbf{x}) - \omega \mathbf{w}_k(\mathbf{x}, T), \quad \mathbf{x} \in \Omega$$

where $\omega > 0$ (relaxation parameter), and let $\langle \mathbf{u}_{k+1}, \theta_{k+1} \rangle$ solve the thermoelastic system with $\mathbf{p} = \mathbf{p}_{k+1}$

- (*iv*) The procedure continues by repeating steps (*ii*) and (*iii*) until a desired level of accuracy is achieved (see next slide)
 - ► This is a Landweber-Fridmann iteration scheme [Fridman, 1956].
 - The proof of convergence can be found in [Van Bockstal and Slodička, 2015, Theorem 3.3] for isotropic materials and in [Van Bockstal and Marin, 2017, Theorem 4.2]

Thermoelastic systems OO O	Problem 0000	Uniqueness 00 0 00	Algorithm O●	Numerical Experiments 00 00000000	Conclusion and further research
For linear systems					

Stopping criterion

- Morozov's discrepancy principle is used [Morozov, 1966]
- The case is considered when there is some error in the additional measurement, i.e.

$$\|\boldsymbol{\xi}_{T}-\boldsymbol{\xi}_{T}^{\mathsf{e}}\|\leqslant e,$$

where $e(\tilde{e})$ depends on the noise level with magnitude $\tilde{e} > 0$

- ▶ The solutions \mathbf{p}_k^e , \mathbf{u}_k^e and θ_k^e at iteration k are obtained by using the algorithm
- ► The discrepancy principle suggests to finish the iterations at the smallest index k = k(e, ω) for which

$$E_{k,\mathbf{u}_{T}} = \left\|\mathbf{u}_{k}^{e}(\cdot,T) - \widetilde{\boldsymbol{\xi}}_{T}^{e}\right\| \leq e$$

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00 0	0000	00000	00	• 0 0000000	000

Numerical experiment: setting

- ▶ 1D linear model for isotropic type-I (K = 0) and type-III thermoelasticity is considered
- ▶ $\Omega = [0, 1], T = 1$
- ► copper alloy: shear modulus $G = 4.8 \times 10^{10} \text{ N/m}^2$, Poisson's ratio $\nu = 0.34$, $\alpha_T = 16.5 \times 10^{-6} \text{ }^{1}\text{/K}$, $\kappa = 401 \text{ }^{W}\text{/mK}$, $\rho = 8960 \text{ }^{\text{kg}}\text{/m}^3$ and $C_s = 385 \text{ }^{J}\text{/kgK}$
- $g = 2 \times 10^8$, $T_0 = 293 {
 m K}$

•
$$\alpha = \mu$$
, $\beta = \mu + \lambda$ with $\lambda = \frac{2\nu G}{1 - 2\nu}$ and $\mu = G$

► Three choices for the convolution kernel are made, namely K = 0, $K = \exp(-t)$ and $K = 1/\sqrt{t}$

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00	0000	00000	00	0 0 00000000	000

Numerical experiment: setting

- The forward coupled problems in this procedure are discretized in time according to the backward Euler method with timestep 0.0005
- At each time-step, the resulting elliptic coupled problems are solved numerically by the finite element method (FEM) using first order (P1-FEM) Lagrange polynomials for the space discretization. A fixed uniform mesh consisting of 200 intervals is used

The finite element library DOLFIN [Logg and Wells, 2010, Logg et al., 2012b] from the FEniCS project [Logg et al., 2012a] is used

Thermoelastic systems OO O	Problem 0000	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments OO OOOOOOOO	Conclusion and further research 00 0
Results of numerical experin	nents				

Exact solution

$$u(x,t) = (1+t)^2 x(x-1)^2$$
 and $\theta(x,t) = (1+t)x(1-x)^2$
 $p_1(x) = 10x(1-x)$

Figure: The exact source p_1 and its corresponding numerical solution, retrieved using various levels of noise in the additional measurement, for various convolution kernels, namely (a) K = 0, (b) $K = \exp(-t)$, and (c) $K = 1/\sqrt{t}$. The relaxation parameter $\omega = 10$.

Thermoelastic systems OO O	Problem 0000	Uniqueness 00000	Algorithm 00	Numerical Experiments ○○ ○●○○○○○○	Conclusion and further research

$$p_2(x) = \exp\left(-20(x-0.5)^2
ight)$$

Figure: The exact source p_2 and its corresponding numerical solution, retrieved using various levels of noise in the additional measurement, for various convolution kernels, namely (a) K = 0, (b) $K = \exp(-t)$, and (c) $K = 1/\sqrt{t}$. The relaxation parameter $\omega = 10$.

Thermoelastic systems OO O	Problem 0000	Uniqueness 00 0 00	Algorithm 00	Numerical Experiments	Conclusion and further research
Results of numerical experime	nts				

Table: The stopping iteration number $\tilde{k} = k(e(\tilde{e}), 10)$ and the CPU time (mins), obtained for the experiments with the unknown sources p_1 and p_2 .

ẽ		1%	p	1 5%		10%	0	.5%	1	P2 L%	:	3%
	Ĩĸ	time	ĩ	time	ĥ	time	ĩ	time	ĩ	time	ĩ	time
<i>K</i> = 0	136	94.7	11	8.2	9	6.3	387	327.4	386	327.2	172	60.7
$K = \exp(-t)$	133	138.7	9	10.4	9	9.9	503	538.1	321	416.2	177	111.2
$K = 1/\sqrt{t}$	142	144.3	10	11	8	8.9	491	532.6	390	468.4	206	183.4

Following experiments:

$$p_{3}(x) = \begin{cases} 0 & 0 \leqslant x \leqslant \frac{1}{3} \\ 6x - 2 & \frac{1}{3} \leqslant x \leqslant \frac{1}{2} \\ 4 - 6x & \frac{1}{2} \leqslant x \leqslant \frac{2}{3} \\ 0 & \frac{2}{3} \leqslant x \leqslant 1 \end{cases} \quad p_{4}(x) = \begin{cases} x(0.5 - x)(1 - x) & 0 \leqslant x \leqslant \frac{1}{2} \\ x(x - 0.5)(1 - x) & \frac{1}{2} \leqslant x \leqslant 1 \end{cases}$$
$$p_{5}(x) = \begin{cases} 0 & 0 \leqslant x < \frac{1}{3} \\ 1 & \frac{1}{3} \leqslant x \leqslant \frac{2}{3} \\ 0 & \frac{2}{3} < x \leqslant 1 \end{cases} \quad p_{6}(x) = 10x(x - 1)^{2}$$

Thermoelastic systems 00 0	Problem 0000	Uniqueness 00000	Algorithm 00	Numerical Experiments	Conclusion and further research OOO

Figure: The exact sources p_3 , p_4 and p_5 and its numerical approximations for $\tilde{e} = 0\%$ (a,c,e) and for different noise levels (b,d,f). The relaxation parameter $\omega = 10$.

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00 0	0000	00000	00	00 0000●000	000

Other relaxation parameter

Figure: The exact source p_4 and its numerical approximations for $\omega = 2$ (a) and for $\omega = 20$ (b).

• The results for small noise are similar to the results obtained when $\omega = 10$

Thermoelastic systems 00 0	Problem 0000	Uniqueness 00000	Algorithm 00	Numerical Experiments	Conclusion and further research 00 0

Figure: The exact source p_5 and its numerical approximations for $\tilde{e} = 1\%$ (a) and for $\tilde{e} = 3\%$ (b) for different values of g. The relaxation parameter $\omega = 10$.

Figure: The exact source p_2 and its numerical approximations for $\tilde{e} = 3\%$ for different values of g. The relaxation parameter $\omega = 10$.

00 0000 00000 00 00 000 0 000000€0	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
	00	0000	00000	00	00 00000000	000

Figure: The non-symmetric exact source p_6 and its numerical approximations (using $\tilde{e} = 3\%$) for different initial guesses: 0 (a), $6.44x - 12.27x^2 + 5.83x^3$ (b), $9.68x - 18.46x^2 + 8.78x^3$ (c) and $12.88x - 24.54x^2 + 11.65x^3$ (d). The relaxation parameter $\omega = 10$.

Thermoelastic systems 00 0	Problem 0000	Uniqueness 00000	Algorithm 00	Numerical Experiments ○○ ○○○○○○●	Conclusion and further research 00 0	
Results of numerical experiments						

Figure: The non-symmetric exact source p_6 and its numerical approximations for T = 0.2 (a) and T = 0.5 (b). The relaxation parameter $\omega = 10$.

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00	0000	00000	00	00 00000000	•0 0

Conclusion

- It is possible to recover uniquely an unknown vector source in all types of damped thermoelastic systems when an additional final in time measurement of the displacement is measured
- A numerical algorithm in a linear case gives accurate shape recovery
- ▶ The algorithm is sensitive to the amount of noise added to the data
- There is a certain limitation of the method with respect to the recovery of non-symmetric sources

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00 0	0000	00000	00	00 0000000	000

Future research

- More numerical experiments (e.g. influence of the parameter g on the results)
- Testing different stopping criteria (up to now, no better results)
- ▶ What if **g** is nonlinear?
- Other inverse problems for thermoelasticity, e.g. the recovery of time-dependent sources, convolution kernel
- ▶ Goal: with numerical scheme!

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00 0	0000	00000	00	00 00000000	000

References I

Bellassoued, M. and Yamamoto, M. (2011).

Carleman estimates and an inverse heat source problem for the thermoelasticity system. Inverse Problems, 27(1):015006.

Fridman, V. M. (1956).

Method of successive approximations for a Fredholm integral equation of the 1st kind. *Uspekhi Mat. Nauk*, 11(1(67)):233–234.

Johansson, T. and Lesnic, D. (2007).

Determination of a spacewise dependent heat source. *J. Comput. Appl. Math.*, 209(1):66–80.

Kirane, M. and Tatar, N.-E. (2001).

A nonexistence result to a cauchy problem in nonlinear one dimensional thermoelasticity. *Journal of Mathematical Analysis and Applications*, 254(1):71 - 86.

Lions, J. L. and Magenes, E. (1972).

Non-homogeneous boundary value problems and applications, volume 181 of Non-homogeneous Boundary Value Problems and Applications.

Springer Berlin Heidelberg.

Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
00	0000	00000	00	00 00000000	00●

References II

```
    Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012a).
    Automated Solution of Differential Equations by the Finite Element Method.
    Springer, Berlin, Heidelberg.
    Logg, A., Wells, G., and Hake, J. (2012b).
```

DOLFIN: a C++/Python Finite Element Library, chapter 10. Springer, Berlin, Heidelberg.

Logg, A. and Wells, G. N. (2010). DOLFIN: Automated Finite Element Computing. *ACM Trans. Math. Software*, 37(2):28.

Morozov, V. A. (1966).

On the solution of functional equations by the method of regularization. Soviet Math. Dokl., 7:414–417.

Muñoz Rivera, J. E. and Qin, Y. (2002).

Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory.

Nonlinear Anal.: Theory, Methods & Applications, 51(1):11-32.

Stabilization of a locally damped thermoelastic system. *Comput. Appl. Math.*, 27(3):319–357.

00 0000 0000 00 00 00 0 00000000	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiments	Conclusion and further research
	00 0	0000	00000	00	00 0000000	00●

References III

Qin, Y. (2008).

Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkhäuser.

Van Bockstal, K. and Marin, L. (2017).

Recovery of a space-dependent vector source in anisotropic thermoelastic systems. *Computer Methods in Applied Mechanics and Engineering*, 321:269–293.

Van Bockstal, K. and Slodička, M. (2015).

Recovery of a space-dependent vector source in thermoelastic systems. *Inverse Problems Sci. Eng.*, 23(6):956–968.

Wu, B. and Liu, J. (2012).

Determination of an unknown source for a thermoelastic system with a memory effect. Inverse Problems, 28(9):095012.