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Reconstruction of a heat source: problem setting

I Ω ⊂ Rd , d > 1: bounded domain with Lipschitz continuous boundary
Γ = ∂Ω, final time T

I The temperature u, heat source f and initial temperature distribution u0
satisfy  ∂tu −∆u = f (x) in Ω× (0,T )

u = 0 on Γ× (0,T ),
u(x, 0) = u0(x) for x ∈ Ω.

I The forward problem is well-posed
I Suppose that f (x) is unknown
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Reconstruction of a heat source: inverse problem
I Consider the inverse problem

∂tu −∆u = f (x) in Ω× (0,T )
u = 0 on Γ× (0,T ),
u(x, 0) = u0(x) for x ∈ Ω,
u(x,T ) = ψT (x) for x ∈ Ω.

I Define the operator

A : L2(Ω)→ L2(Ω) : f 7→ Af = u(·,T ).

Then the inverse problem is equivalent with solving the operator equation

Af = ψT .

I A is completely continuous ⇒ this inverse problem is ill-posed
I Existence and uniqueness of the solution to this inverse problem is studied

by [Cannon, 1968], [Rundell and Colton, 1980],
[Prilepko and Solov’ev, 1987], [Solov’ev, 1989], [Isakov, 1990],...
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Reconstruction of a heat source: how to solve?

I By minimizing the functional

J(f ) = ‖Af − ψT‖2

[Hasanov, 2007, Johansson and Lesnic, 2007a]
I [Johansson and Lesnic, 2007b] proposed an iterative procedure for finding

the source based on a sequence of well-posed direct problems given the
final overdetermination ψT

I Both approaches made use of an adjoint problem
I Extension of the previous results to a hyperbolic-parabolic coupled

thermoelastic systems without using an adjoint problem
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Three types of thermoelasticity

I Ω ⊂ Rd is an isotropic and homogeneous thermoelastic body, d > 1
I u = (u1, . . . , ud ) denotes the displacement at the location x and the time t
I θ is the temperature difference from the reference value (in Kelvin) of the

solid elastic material
I Assuming null surface displacement on the whole boundary, the classical

thermoelastic system is given by
∂ttu− α∆u− β∇ (∇ · u) + γ∇θ = f(x) in Ω× (0,T );
∂tθ − ρ∆θ − k ?∆θ + γ∇ · ∂tu = h(x) in Ω× (0,T );

u(x, t) = 0 on Γ× (0,T );
θ(x, t) = 0 on Γ× (0,T );

with initial conditions:

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω

I The sign ‘?’ denotes the convolution product

(k ? θ) (x, t) :=

∫ t

0
k(t − s)θ(x, s)ds, (x, t) ∈ Ω× (0,T )
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Three types of thermoelasticity


∂ttu− α∆u− β∇ (∇ · u) + γ∇θ = f(x) in Ω× (0,T );
∂tθ − ρ∆θ − k ?∆θ + γ∇ · ∂tu = h(x) in Ω× (0,T );

u(x, t) = 0 on Γ× (0,T );
θ(x, t) = 0 on Γ× (0,T );

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω

Three types of thermoelasticity:
I type-I: k = 0 and ρ 6= 0 in the parabolic equation:

∂tθ−ρ∆θ + γ∇ · ∂tu = h(x)

I type-II: k 6= 0 and ρ = 0 in the parabolic equation:

∂tθ−k ?∆θ + γ∇ · ∂tu = h(x)

I type-III: k 6= 0 and ρ 6= 0 in the parabolic equation:

∂tθ−ρ∆θ − k ?∆θ + γ∇ · ∂tu = h(x)
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Literature: inverse source problems for thermoelastic systems

I

[Bellassoued and Yamamoto, 2011] investigated an in-
verse heat source problem for type-I thermoelasticity:
they determine h(x) by measuring

u|ω×(0,T ) and θ(·, t0),

where ω is a subdomain of Ω such that Γ ⊂ ∂ω and
t0 ∈ (0,T )

I [Wu and Liu, 2012] studied an inverse source problem of determining f(x)
for type-II thermoelasticity from a displacement measurement

u|ω×(0,T )

I Using a Carleman estimate, a Hölder stability for the inverse source
problem is proved in both contributions, which implies the uniqueness of
the inverse source problem

I No numerical scheme is provided to recover the unknown source
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Problem
Can we find a unique f(x) and/or h(x) from the additional final time measurements

u(x,T ) = ξT (x) and/or θ(x,T ) = ζT (x)

for all types of thermoelasticity and can we provide a numerical scheme?

Solution
Using our approach, it is possible to recover f(x) uniquely from the additional final
time measurement

u(x,T ) = ξT (x),
in the presence of a damping term g (∂tu) = (g1(∂tu), g2(∂tu), g3(∂tu)) in the
hyperbolic equation of the thermoelastic system

I We use a variational approach which implies uniqueness for all types of
thermoelasticity

I We propose a stable iterative algorithm to recover the unknown vector
source f by extending the iterative procedure of
[Johansson and Lesnic, 2007b] to thermoelastic systems
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Find 〈u, θ, f〉 such that
∂ttu + g (∂tu)− α∆u− β∇ (∇ · u) + γ∇θ = f(x) in Ω× (0,T );

∂tθ − ρ∆θ − k ?∆θ + γ∇ · ∂tu = 0 in Ω× (0,T );
u(x, t) = 0 on Γ× (0,T );
θ(x, t) = 0 on Γ× (0,T );

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω,

and such that the following additional measurement is satisfied (the condition of
final overdetermination)

u(x,T ) = ξT (x), x ∈ Ω.

I Note that this inverse problem is ill-posed
I A damping term in thermoelastic systems is also considered in [Qin, 2008,

Chapter 9], [Kirane and Tatar, 2001], [Oliveira and Charão, 2008],...
I If g is linear, then it is possible to consider the case of non-homogeneous

Dirichlet boundary conditions
I Also additional given source terms can be considered if g is linear
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Main ideas

Coupled variational formulation: find 〈u, θ, f〉 ∈ H1
0(Ω)× H1

0 (Ω)× L2(Ω) such that
u(x,T ) = ξT (x) and

(∂tt u,ϕ) + (g (∂tu) ,ϕ) + α (∇u,∇ϕ) + β (∇ · u,∇ · ϕ) +γ (∇θ,ϕ) = (f,ϕ) ,

(∂tθ, ψ) + ρ (∇θ,∇ψ) + (k ?∇θ,∇ψ)−γ (∂t u,∇ψ) = 0,
for all ϕ ∈ H1

0(Ω) and ψ ∈ H1
0 (Ω).

Theorem (Uniqueness)
Let 〈u1, θ1, f1〉 and 〈u2, θ2, f2〉 satisfy the thermoelastic system. Set u = u1 − u2, f = f1 − f2
and θ = θ1 − θ2 such that u(x, 0) = 0, u(x,T ) = 0, ∂tu(x, 0) = 0 and θ(x, 0) = 0. Then f = 0
a.e. in Ω and 〈u, θ〉 = 〈0, 0〉 a.e. in Ω× (0,T ).

I Subtract, equation by equation, the variational formulation corresponding with the
different solutions

I We want to add up both resulting equation such that the mixed term is cancelled out
I A good choice of the test functions is needed:

ϕ = ∂tu and ψ = θ

I Integrate in time over (0,T ) such that∫
Ω

∫ T

0
f(x) · ∂tu(x, t)dt =

∫
Ω

[f(x) · u(x,T )− f(x) · u(x, 0)] = 0
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Sketch of the proof of uniqueness for all types thermoelasticity

Thermoelasticity of type-I

‖∂tu(T )‖2+

∫ T

0
(g (∂tu1)− g (∂tu2) , ∂tu1 − ∂tu2)+‖θ(T )‖2+ρ

∫ T

0
‖∇θ‖2 = 0

I ‖∂tu(T )‖ = 0 gives no guarantee that u = 0
I Assume g componentwise strictly monotone increasing
I Then ut = 0 a.e. in Ω× (0,T ).Therefore,

u(x, 0) = 0⇒ u(x, t) = 0 a.e. in Ω× (0,T )

I θ = 0 on ∂Ω ⇒ θ = 0 a.e. in Ω× (0,T )

I This implies that
(f,ϕ) = 0, ∀ϕ ∈ H1

0(Ω).

From this, we conclude that f = 0 in L2(Ω)
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Sketch of the proof of uniqueness for all types thermoelasticity

Thermoelasticity of type-II

‖∂tu(T )‖2 +

∫ T

0
(g (∂tu1)− g (∂tu2) , ∂tu1 − ∂t u2) + ‖θ(T )‖2 +

∫ T

0
(k ?∇θ,∇θ)︸ ︷︷ ︸

>0

= 0

I We have u = 0, no guarantee that θ = 0
I Assume that k ∈ C2([0,T ]) is strongly positive definite, i.e.∫ T

0
φ(t)(k ? φ)(t)dt > C0

∫ T

0
(k ? φ)2 (t)dt, ∀T > 0,∀φ ∈ L1

loc(Ω)

I Then∫ T

0
‖k ?∇θ‖2 = 0

⇒
∫ t

0
k(t − s)∇θ(x, s)ds = 0 for all t ∈ [0,T ] and x ∈ Ω

I Laplace transform is one-to-one ⇒ ∇θ = 0 in Ω× (0,T )
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Sketch of the proof of uniqueness for all types thermoelasticity

Thermoelasticity of type-III

‖∂tu(T )‖2 +

∫ T

0
(g (∂tu1)− g (∂tu2) , ∂tu1 − ∂tu2)

+ ‖θ(T )‖2 + ρ

∫ T

0
‖∇θ‖2 +

∫ T

0
(k ?∇θ,∇θ)︸ ︷︷ ︸

>0

= 0

I As in the case of thermoelasticity of type-I
I It is sufficient that k ∈ C2([0,T ]) is positive definite∫ T

0
φ(t)(k ? φ)(t)dt > 0 ∀T > 0,∀φ ∈ L1

loc(Ω)

such that ∫ T

0
(k ?∇θ,∇θ) > 0
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For linear systems

The algorithm is based on a sequence of well-posed direct problems

Theorem (Well-posedness of the direct problem (given f))
Assume that ∂t f ∈ L2([0,T ],L2(Ω)), u0 ∈ H2(Ω) ∩H1

0(Ω), u1 ∈ H1(Ω),
θ0 ∈ H2(Ω) ∩ H1

0 (Ω) and 0 < g′(s) 6 C a.e. in R. Then, the thermoelastic
system has a unique solution 〈u, θ〉 such that

u ∈ C1([0,T ],H1
0(Ω)), ∂ttu ∈ C([0,T ],L2(Ω)),

θ ∈ C([0,T ],H1
0 (Ω)), θt ∈ C([0,T ], L2(Ω)).

In the special situation that u0(x) = 0, u1(x) = 0 and θ0 = 0, the following
energy estimate is valid

max
t∈[0,T ]

{
‖∇u(t)‖2 + ‖∇∂tu(t)‖2 + ‖∇θ(t)‖2 + ‖∂tθ(t)‖2

}
6 C ‖f‖2

.

I [Muñoz Rivera and Qin, 2002] proved the global existence and uniqueness of solutions for the one
dimensional type-III thermoelastic system when f = 0 and g = 0

I In the same situation, a more dimensional case is studied in [Zhang and Zuazua, 2003]
I More general (linear) setting: [Lions and Magenes, 1972, Slodička, 1989a, Slodička, 1989b] 15 / 28
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For linear systems

By the principle of linear superposition, we can study
∂ttu + g (∂tu)− α∆u− β∇ (∇ · u) + γ∇θ = f (x, t) ∈ QT ;

∂tθ − ρ∆θ − k ?∆θ + γ∇ · ∂tu = 0 (x, t) ∈ QT ;
u(x, t) = 0 (x, t) ∈ ΣT ;
θ(x, t) = 0 (x, t) ∈ ΣT ;

u(x, 0) = ∂tu(x, 0) = 0, θ(x, 0) = 0 x ∈ Ω;

together with the transformed final measurement, i.e.

u(x,T ) = ξ̃T (x), x ∈ Ω

I Define the corresponding solution operator M(t) : L2(Ω)→ L2(Ω) by

M(t)f = u(·, t).

I M(t) ∈ L
(
L2(Ω),L2(Ω)

)
because the initial conditions are zero

I Finding a solution to the inverse problem is then equivalent to solving the
following operator equation

M(T )f = ξ̃T .
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For linear systems

Algorithm for finding the source term if g is linear
(i) Choose an initial guess f0 ∈ L2(Ω). Let 〈u0, θ0〉 be the solution to the

thermoelastic system with f = f0

(ii) Assume that fk and 〈uk , θk〉 have been constructed. Let 〈wk , ηk〉 solve the
thermoelastic system with f(x) = uk (x,T )− ξ̃T (x)

(iii) Define
fk+1(x) = fk (x)− κwk (x,T ), x ∈ Ω

where κ > 0 (relaxation parameter), and let 〈uk+1, θk+1〉 solve the
thermoelastic system with f = fk+1

(iv) The procedure continues by repeating steps (ii) and (iii) until a desired
level of accuracy is achieved (see further)

Problem
How to proof the convergence of this scheme?
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For linear systems

Convergence of the proposed algorithm
Proof: The linearity of M(T ) implies

fk+1 = fk − κwk (·,T )

= fk − κM(T )
(

uk (·,T )− ξ̃T

)
= fk − κM(T ) (M(T )fk −M(T )f)

= fk − κM(T )M(T ) (fk − f)

Therefore,
fk+1 − f = (I − κM(T )M(T )) (fk − f)

I This is a Landweber-Friedmann iteration scheme for solving the operator
equation M(T )f = ξ̃T

I If 0 < κ < ‖M(T )‖−2, then the sequence fk converges to f in L2(Ω) for
arbitrary f0 ∈ L2(Ω) [Engl et al., 1996, Theorem 6.1]-
[Slodička and Melicher, 2010, Theorem 3]

I uk → u and θk → θ in C
(
[0,T ],H1

0(Ω)
)
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For linear systems

Stopping criterion

I The case is considered when there is some error in the additional
measurement, i.e.

‖ξT − ξ
e
T‖ 6 e,

with the noise level e > 0
I This implies that also ξ̃T is perturbated, denoted by ξ̃

e
T

I The solutions fe
k ,ue

k and θe
k at iteration k are obtained by using the

algorithm
I The discrepancy principle [Morozov, 1966] suggests to finish the iterations

at the smallest index k = k(e, κ) for which

Ek,uT =
∥∥∥ue

k (·,T )− ξ̃
e
T

∥∥∥ 6 e
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Numerical experiment: setting

I 1D linear model of type-I thermoelasticity is considered: Ω = [0, 1] and
T = 1, g = I

I The forward coupled problems in this procedure are discretized in time
according to the backward Euler method with timestep 0.001

I At each time-step, the resulting elliptic coupled problems are solved
numerically by the finite element method (FEM) using first order
(P1-FEM) Lagrange polynomials for the space discretization. A fixed
uniform mesh consisting of 50 intervals is used

I The unknown source in the experiment is f (x) = x(x − 1)

I Final in time measurement: ξ1(x) = 4x(x − 1) + uncorrelated noise
I Implementation: in FEniCS
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(a) (b)
Figure : The exact solution and the numerical solution for the source for ẽ = 1% (a)
and ẽ = 5% (b) for different values of κ.

Table : The stopping iteration number k = k(e(ẽ), κ) for the numerical experiment

κ \ ẽ 1% 3% 5%
1 151 108 107

10 14 10 10
50 3 2 2
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Conclusion:
I It is possible to recover uniquely an unknown vector source in all types of

damped thermoelastic systems when an additional final in time
measurement of the displacement is measured

I A numerical algorithm in a linear case gives accurate shape recovery
Future research:

I More numerical experiments
I Testing different stopping criteria (up to now, no better results)
I Recovery of time-dependent sources in thermoelastic systems
I Inverse kernel problems for thermoelasticity
I Goal: with numerical scheme!
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Figure : The exact solution and the numerical solution for the discontinuous source for
ẽ = 1% and κ = 10.
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