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Reconstruction of a heat source: problem setting

» QCRY d>1: bounded domain with Lipschitz continuous boundary
=09, final time T
» The temperature u, heat source f and initial temperature distribution ug
satisfy
Oru—Au="F(x) inQx(0,T)
u=0 onT x (0, T),
u(x,0) = up(x) for x € Q.
» The forward problem is well-posed
» Suppose that 7(x) is unknown
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Reconstruction of a heat source: inverse problem
» Consider the inverse problem
Oru—Au=1Ff(x) inQx(0,T)
u=0 onT x (0, T),
u(x,0) = up(x) for x € Q,
u(x, T) =17(x) forx € Q.

» Define the operator
A L2(Q) = L2(Q): f— Af = u(-, T).
Then the inverse problem is equivalent with solving the operator equation
Af =T,

» A is completely continuous = this inverse problem is ill-posed

» Existence and uniqueness of the solution to this inverse problem is studied
by [Cannon, 1968], [Rundell and Colton, 1980],
[Prilepko and Solov'ev, 1987], [Solov'ev, 1989], [Isakov, 1990],...



Introduction Thermoelastic systems Problem Uniqueness Algorithm Numerical Experiment Conclusion and further research

ooe e]e] (e]e] [e] 00000 [e]e] 000
[¢] 000

Reconstruction of a heat source: how to solve?

» By minimizing the functional
J(F) = |Af o7l

[Hasanov, 2007, Johansson and Lesnic, 2007a]

» [Johansson and Lesnic, 2007b] proposed an iterative procedure for finding
the source based on a sequence of well-posed direct problems given the
final overdetermination ¢t

» Both approaches made use of an adjoint problem

» Extension of the previous results to a hyperbolic-parabolic coupled
thermoelastic systems without using an adjoint problem
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v

Q C R9 is an isotropic and homogeneous thermoelastic body, d > 1

u = (uy,...,uy) denotes the displacement at the location x and the time t
0 is the temperature difference from the reference value (in Kelvin) of the
solid elastic material

Assuming null surface displacement on the whole boundary, the classical
thermoelastic system is given by

Opu —alu — BV (V-u) +94V0 =1f(x) inQx(
010 — pAO — kx A +~V - Oru = h(x) in Q x(
u(x,t) =0 on T x(
O(x,t) =0 on T x(

vy

v

with initial conditions:
u(x,0) =up(x), Jwu(x,0)=muy(x), 6(x,0)= go(x), x € Q

» The sign ‘x" denotes the convolution product

(k#0) (x, £) = /O K(t = s)0(x,s)ds,  (x,t) €Qx (0, T)
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Three types of thermoelasticity

Opu—alAu— BV (V-u)++9V0 =f(x) inQx(0,T);
010 — pAG — kx AO+~V -0u = h(x) inQx(0,T);
u(x,t) =0 onl x (0, T);

O(x,t) =0 onl x(0,T);

u(x,0) =up(x), 9wu(x,0) =ur(x), O(x,0) =6by(x) inQ

Three types of thermoelasticity:
» type-l: k =0 and p # 0 in the parabolic equation:

0:0—pAO +~+V - Opu = h(x)
» type-ll: k #£ 0 and p = 0 in the parabolic equation:
0i0—k x AO 4+ ~+V - Oru = h(x)
» type-lll: k # 0 and p # 0 in the parabolic equation:
Or0—pAO — k x AO + 4V - Oru = h(x)
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Literature:

inverse source problems for thermoelastic systems

[Bellassoued and Yamamoto, 2011] investigated an in-
verse heat source problem for type-l thermoelasticity:
they determine h(x) by measuring

u\wX(O,T) and 0(3 tO)a «
where w is a subdomain of Q such that  C dw and
to € (0, 7)

[Wu and Liu, 2012] studied an inverse source problem of determining f(x)
for type-ll thermoelasticity from a displacement measurement

Ui, (0,T)

Using a Carleman estimate, a Holder stability for the inverse source
problem is proved in both contributions, which implies the uniqueness of
the inverse source problem

No numerical scheme is provided to recover the unknown source
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Problem

Can we find a unique f(x) and/or h(x) from the additional final time measurements
u(x, T) = &7 (x) and/or 0(x, T) = (r(x)

for all types of thermoelasticity and can we provide a numerical scheme?

Solution
Using our approach, it is possible to recover f(x) uniquely from the additional final
time measurement

u(x, T) = sT(X)a
in the presence of a damping term g (0:u) = (g1(0:u), g2(9¢u), g3(d:u)) in the
hyperbolic equation of the thermoelastic system

» We use a variational approach which implies uniqueness for all types of
thermoelasticity

» We propose a stable iterative algorithm to recover the unknown vector
source f by extending the iterative procedure of
[Johansson and Lesnic, 2007b] to thermoelastic systems
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Find (u,6,f) such that

Opu+ g (0iu) — alu — BV (V-u) +4VO =f(x) inQx(0,T),
0:0 — pAO — k*x A0 +~+V -0u =0 in Q2 x (0, T);
u(x,t) =0 onT x (0, T);
f(x,t) =0 onl x (0, T);
u(x,0) =up(x), d:u(x,0)=ui(x), 60(x,0) =0(x) inQ,

and such that the following additional measurement is satisfied (the condition of
final overdetermination)

u(x, T) = &4(x), x € Q.

» Note that this inverse problem is ill-posed

> A damping term in thermoelastic systems is also considered in [Qin, 2008,
Chapter 9], [Kirane and Tatar, 2001], [Oliveira and Char&o, 2008],...

» If g is linear, then it is possible to consider the case of non-homogeneous
Dirichlet boundary conditions

» Also additional given source terms can be considered if g is linear
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Main ideas

| |
Coupled variational formulation: find (u,,f) € H}(Q) x H}(Q) x L2(Q) such that
u(x, T) = £€7(x) and
(attu: 30) + (g (81'") ) ‘P) +a (Vu, v‘to) + B (v ‘u, V- ‘P) +7(V0, ) = (fa CP) ,
(0:0,9) + p(VO,V) + (k x VO, V) —v (0ru, V1)) =0,
for all ¢ € H}(Q) and ¥ € H}(Q).

Theorem (Uniqueness)

Let {u1,61,f1) and (uy, 02, f2) satisfy the thermoelastic system. Setu =u; —uy, f =f; — f>
and 6 = 01 — 0 such that u(x,0) =0, u(x, T) = 0, d:u(x,0) = 0 and 6(x,0) =0. Thenf =0
a.e. in Q and (u,0) = (0,0) a.e. in 2 x (0, T).

» Subtract, equation by equation, the variational formulation corresponding with the
different solutions

v

We want to add up both resulting equation such that the mixed term is cancelled out

v

A good choice of the test functions is needed:
@p=0u and P =260

Integrate in time over (0, T) such that

-
/ / f(x) - Oru(x, t)dt = / [f(x)-u(x, T) — f(x) - u(x,0)] =0
QJo Q

v
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Sketch of the proof of uniqueness for all types thermoelasticity
I I

Thermoelasticity of type-I

T T
(T + / (& (Beur) — g (euz) . e — Do)+ [6(T)|> +p / V6] = o
0 0

v

||0:u(T)|| = O gives no guarantee that u =0

v

Assume g componentwise strictly monotone increasing
Then uy =0 a.e. in Q x (0, T).Therefore,

v

u(x,0) =0=u(x,t) =0a.e inQ2x(0,T)

v

0=00n0Q=0=0ae inQx(0,T)
This implies that

v

(f.@) =0, Ve H(Q).
From this, we conclude that f = 0 in L?(Q)
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Sketch of the proof of uniqueness for all types thermoelasticity
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Thermoelasticity of type-Il

T T
[0ea(T)I+ [ (g(eu1) — g (Deu2) , D —6tU2)+||9(T)||2+/ (k*V0,V0) =0
0 0

—_———
>0

v

We have u = 0, no guarantee that § =0
Assume that k € C2([0, T]) is strongly positive definite, i.e.

v

;
/ o(t)(k * ¢)(t)dt Cb/‘(k*@20kh, VT >0,Y¢ € L} .(Q)
» Then

.
/‘Hk*vﬂf—
0

t
= / k(t —s)VO(x,s)ds =0 for all t € [0, T] and x € Q
0

v

Laplace transform is one-to-one = VO =0in Q x (0, T)
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Sketch of the proof of uniqueness for all types thermoelasticity
I

Thermoelasticity of type-IlI

)
leu(TIE + / (& (Ouu1) — g (Oouz) , iy — Do)
0

T T
(TR + / Vol + / (k+V0,6) = 0
0 0
—_—
>0

» As in the case of thermoelasticity of type-I
» It is sufficient that k € C2([0, T]) is positive definite

)
/ o) (kx@)()dE >0 VT >0,Y6 € LL(Q)
0

such that .
/ (k*V6,V0) =0
0
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For linear systems

The algorithm is based on a sequence of well-posed direct problems
Theorem (Well-posedness of the direct problem (given f))
Assume that O.f € Ly([0, T],L3(Q)), to € H*(Q) N Hg(Q), U, € HY(Q),
fo € H3(Q) N HE(Q) and 0 < g/(s) < C a.e. in R. Then, the thermoelastic
system has a unique solution (u, ) such that

u € CH([0, TL,H5(Q)), dwu € C([0, T],L3()),

6 C([0, T], Hy()),  8: € C([0, T], Lo(%2)).

In the special situation that tg(x) = 0, ty(x) = 0 and 0y = 0, the following
energy estimate is valid

max {[IVu(0)]? + IVoru(e)[ + VO + 10001} < C IR

te[0,T]

» [Mufioz Rivera and Qin, 2002] proved the global existence and uniqueness of solutions for the one

dimensional type-lll thermoelastic system when f =0 and g =0
» In the same situation, a more dimensional case is studied in [Zhang and Zuazua, 2003]
P More general (linear) setting: [Lions and Magenes, 1972, Sloditka, 1989a, Sloditka, 1989b]
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For linear systems
I

By the principle of linear superposition, we can study

0w + g (0iu) —aAu — BV (V-u) +4V0 =f (x,t) € Qr;
010 — pAO — k*x N0 +~V -0,u =0 (x,t) € Qr;
u(x,t) =0 (x,t) € X71;
O(x,t) =0 x,t) € Xr;
u(x,0) = dru(x,0) =0, 6(x,0) =0 xeQ;

together with the transformed final measurement, i.e.

u(x, T) = £1(x), xeQ

» Define the corresponding solution operator M(t) : L?(2) — L?(Q) by
M(t)f = u(-, t).

» M(t) € £ (L*(Q),L*()) because the initial conditions are zero
» Finding a solution to the inverse problem is then equivalent to solving the
following operator equation

M(T)f = &7

16 /28
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For linear systems

Algorithm for finding the source term if g is linear

(i) Choose an initial guess fy € L2(Q2). Let (ug,6p) be the solution to the
thermoelastic system with f = fy

(if) Assume that fi and (u, 0x) have been constructed. Let (wy, ) solve the
thermoelastic system with f(x) = ux(x, T) — £7(x)
(iii) Define
fk+1(X) = fk(X) — K}Wk(X, T), x €N
where k > 0 (relaxation parameter), and let (uxt1, 0x41) solve the
thermoelastic system with f = f;

(iv) The procedure continues by repeating steps (ii) and (iii) until a desired
level of accuracy is achieved (see further)

Problem

How to proof the convergence of this scheme?
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Convergence of the proposed algorithm
Proof: The linearity of M(T) implies

fipr=Ffc—rwi(-, T)

=f,—cM(T (uk §T>
=, — kM(T) (M(T)fx — M(T)f)
=fi — kM(T)M(T) (fx — )

Therefore,
fir1 — = (1= sM(T)M(T)) (f — )

» This is a Landweber-Friedmann iteration scheme for solving the operator
equation M(T)f = £+

> If 0 <k < ||M( T)||_2, then the sequence f; converges to f in L2(Q) for
arbitrary fo € L2(Q) [Engl et al., 1996, Theorem 6.1]-
[Slodi¢ka and Melicher, 2010, Theorem 3]

> ux —uand 6 — 6 in C ([0, T],H§(Q))
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I

Stopping criterion

» The case is considered when there is some error in the additional
measurement, i.e.

€7 — €7 <e,
with the noise level e > 0
» This implies that also ET is perturbated, denoted by EeT

> The solutions f7,uf and 0 at iteration k are obtained by using the
algorithm

» The discrepancy principle [Morozov, 1966] suggests to finish the iterations
at the smallest index k = k(e, k) for which

Ear = ||uf(- T) - &7 <ce
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Numerical experiment: setting

» 1D linear model of type-l thermoelasticity is considered: Q = [0, 1] and
T=1g=1

» The forward coupled problems in this procedure are discretized in time
according to the backward Euler method with timestep 0.001

» At each time-step, the resulting elliptic coupled problems are solved
numerically by the finite element method (FEM) using first order
(P1-FEM) Lagrange polynomials for the space discretization. A fixed
uniform mesh consisting of 50 intervals is used

» The unknown source in the experiment is f(x) = x(x — 1)
» Final in time measurement: &;(x) = 4x(x — 1) + uncorrelated noise
» Implementation: in FEniCS

20/28



R

Introduction Thermoelastic systems Problem Uniqueness Algorithm Numerical Experiment Conclusion and further research
[e]e]e} e]e] (e]e] [e] 00000 oe 000
[¢] 000
I I
I I
0 0
-0.05 -0.05
— 0.1 — 0.1
z z
a -4
8-0.15 8-0.15
5 5
& &
-0.2 -0.2
-0.25 -0.25
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[0.1] [0,1]

exact solution 0 —— exact solution
® =1 k=1

k=1
K =50 —o—

a b
Figure : The exact so‘u%ion and the numerical solution for the( s)ource for & =1% (a)
and & = 5% (b) for different values of «.

Table : The stopping iteration number k = k(e(&), k) for the numerical experiment
k\é 1% 3% 5%
1 151 108 107

10 14 10 10
50 3 2 2
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Conclusion:

> |t is possible to recover uniquely an unknown vector source in all types of
damped thermoelastic systems when an additional final in time
measurement of the displacement is measured

» A numerical algorithm in a linear case gives accurate shape recovery
Future research:

» More numerical experiments

» Testing different stopping criteria (up to now, no better results)

» Recovery of time-dependent sources in thermoelastic systems
» Inverse kernel problems for thermoelasticity
>

Goal: with numerical scheme!
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Figure : The exact solution and the numerical solution for the discontinuous source for
& =1% and x = 10.
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