

Recovery of space-dependent sources in thermoelastic systems

K. Van Bockstal and M. Slodička

Ghent University Department of Mathematical Analysis Numerical Analysis and Mathematical Modelling Research Group

7th International Conference "Inverse Problems: Modeling and Simulation", May 26-31, 2014, Fethiye, Turkey

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness 0 000	Algorithm 00000	Numerical Experiment	Conclusion and further research

Outline

Introduction

Thermoelastic systems

Three types of thermoelasticity Literature: inverse source problems for thermoelastic systems

Problem

Uniqueness

Main ideas Sketch of the proof of uniqueness for all types thermoelasticity

Algorithm

For linear systems

Numerical Experiment

Conclusion and further research

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00	00	0 000	00000	00	000

Reconstruction of a heat source: problem setting

- $\Omega \subset \mathbb{R}^d$, $d \ge 1$: bounded domain with Lipschitz continuous boundary $\Gamma = \partial \Omega$, final time T
- ► The temperature u, heat source f and initial temperature distribution u₀ satisfy

$$\begin{cases} \partial_t u - \Delta u = f(\mathbf{x}) & \text{ in } \Omega \times (0, T) \\ u = 0 & \text{ on } \Gamma \times (0, T), \\ u(\mathbf{x}, 0) = u_0(\mathbf{x}) & \text{ for } \mathbf{x} \in \Omega. \end{cases}$$

- The forward problem is well-posed
- Suppose that f(x) is unknown

○●○ 00 00 0 000 00 000 ○ 000	Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
	000	00	00	0 000	00000	00	000

Reconstruction of a heat source: inverse problem

Consider the inverse problem

$$\begin{cases} \partial_t u - \Delta u = f(\mathbf{x}) & \text{in } \Omega \times (0, T) \\ u = 0 & \text{on } \Gamma \times (0, T), \\ u(\mathbf{x}, 0) = u_0(\mathbf{x}) & \text{for } \mathbf{x} \in \Omega, \\ u(\mathbf{x}, T) = \psi_T(\mathbf{x}) & \text{for } \mathbf{x} \in \Omega. \end{cases}$$

Define the operator

$$A: L^2(\Omega) \to L^2(\Omega): f \mapsto Af = u(\cdot, T).$$

Then the inverse problem is equivalent with solving the operator equation

$$Af = \psi_T$$

- A is completely continuous \Rightarrow this inverse problem is ill-posed
- Existence and uniqueness of the solution to this inverse problem is studied by [Cannon, 1968], [Rundell and Colton, 1980], [Prilepko and Solov'ev, 1987], [Solov'ev, 1989], [Isakov, 1990],...

00● 00 00 00 00 000 000	Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
0 000	00●	00	00	0 000	00000	00	000

Reconstruction of a heat source: how to solve?

By minimizing the functional

$$J(f) = \|Af - \psi_T\|^2$$

[Hasanov, 2007, Johansson and Lesnic, 2007a]

- [Johansson and Lesnic, 2007b] proposed an iterative procedure for finding the source based on a sequence of well-posed direct problems given the final overdetermination ψ_T
- Both approaches made use of an adjoint problem
- Extension of the previous results to a hyperbolic-parabolic coupled thermoelastic systems without using an adjoint problem

Introduction 000	Thermoelastic systems	Problem 00	Uniqueness O OOO	Algorithm 00000	Numerical Experiment	Conclusion and further research			
Three types of thermoelasticity									

- ▶ $\Omega \subset \mathbb{R}^d$ is an isotropic and homogeneous thermoelastic body, $d \ge 1$
- ▶ $\mathbf{u} = (u_1, \dots, u_d)$ denotes the displacement at the location \mathbf{x} and the time t
- \blacktriangleright θ is the temperature difference from the reference value (in Kelvin) of the solid elastic material
- Assuming null surface displacement on the whole boundary, the classical thermoelastic system is given by

$$\begin{cases} \partial_{tt} \mathbf{u} - \alpha \Delta \mathbf{u} - \beta \nabla (\nabla \cdot \mathbf{u}) + \gamma \nabla \theta &= \mathbf{f}(\mathbf{x}) & \text{in } \Omega \times (0, T); \\ \partial_t \theta - \rho \Delta \theta - \mathbf{k} \star \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} &= h(\mathbf{x}) & \text{in } \Omega \times (0, T); \\ \mathbf{u}(\mathbf{x}, t) &= \mathbf{0} & \text{on } \Gamma \times (0, T); \\ \theta(\mathbf{x}, t) &= 0 & \text{on } \Gamma \times (0, T); \end{cases}$$

with initial conditions:

$$\mathbf{u}(\mathbf{x},0) = \overline{\mathbf{u}}_0(\mathbf{x}), \quad \partial_t \mathbf{u}(\mathbf{x},0) = \overline{\mathbf{u}}_1(\mathbf{x}), \quad \theta(\mathbf{x},0) = \overline{\theta}_0(\mathbf{x}), \quad \mathbf{x} \in \Omega$$

▶ The sign '★' denotes the convolution product

$$(k \star \theta)(\mathbf{x}, t) := \int_0^t k(t-s)\theta(\mathbf{x}, s) \mathrm{d}s, \qquad (\mathbf{x}, t) \in \Omega \times (0, T)$$

Introduction 000	Thermoelastic systems ○ ○	Problem 00	Uniqueness O OOO	Algorithm 00000	Numerical Experiment	Conclusion and further research OOO			
Three types of thermoelasticity									

$$\begin{array}{rcl} \partial_{tt}\mathbf{u} - \alpha\Delta\mathbf{u} - \beta\nabla\left(\nabla\cdot\mathbf{u}\right) + \gamma\nabla\theta &= \mathbf{f}(\mathbf{x}) & \text{ in } \Omega\times(0,T);\\ \partial_{t}\theta - \rho\Delta\theta - k\star\Delta\theta + \gamma\nabla\cdot\partial_{t}\mathbf{u} &= h(\mathbf{x}) & \text{ in } \Omega\times(0,T);\\ \mathbf{u}(\mathbf{x},t) &= \mathbf{0} & \text{ on } \Gamma\times(0,T);\\ \theta(\mathbf{x},t) &= 0 & \text{ on } \Gamma\times(0,T);\\ \varepsilon,0) = \overline{\mathbf{u}}_{0}(\mathbf{x}), \quad \partial_{t}\mathbf{u}(\mathbf{x},0) = \overline{\mathbf{u}}_{1}(\mathbf{x}), \quad \theta(\mathbf{x},0) &= \overline{\theta}_{0}(\mathbf{x}) & \text{ in } \Omega\end{array}$$

Three types of thermoelasticity:

u(x

• type-I: k = 0 and $\rho \neq 0$ in the parabolic equation:

$$\partial_t \theta - \rho \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} = h(\mathbf{x})$$

• type-II: $k \neq 0$ and $\rho = 0$ in the parabolic equation:

$$\partial_t \theta - k \star \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} = h(\mathbf{x})$$

• type-III: $k \neq 0$ and $\rho \neq 0$ in the parabolic equation:

$$\partial_t \theta - \rho \Delta \theta - k \star \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} = h(\mathbf{x})$$

Introduction 000	Thermoelastic systems ○○ ●	Problem 00	Uniqueness O OOO	Algorithm 00000	Numerical Experiment	Conclusion and further research			
Literature: inverse source problems for thermoelastic systems									

[Bellassoued and Yamamoto, 2011] investigated an inverse heat source problem for type-I thermoelasticity: they determine h(x) by measuring

$$\boldsymbol{u}_{\mid \omega \times (0,T)}$$
 and $\theta(\cdot, t_0)$,

where ω is a subdomain of Ω such that $\Gamma \subset \partial \omega$ and $t_0 \in (0, T)$

 [Wu and Liu, 2012] studied an inverse source problem of determining f(x) for type-II thermoelasticity from a displacement measurement

$$\mathbf{u}_{|\omega \times (0,T)}$$

- Using a Carleman estimate, a Hölder stability for the inverse source problem is proved in both contributions, which implies the uniqueness of the inverse source problem
- ▶ No numerical scheme is provided to recover the unknown source

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00	•0	0 000	00000	00	000

Problem

Can we find a unique f(x) and/or h(x) from the additional final time measurements

$$\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x}) \text{ and/or } \theta(\mathbf{x}, T) = \zeta_T(\mathbf{x})$$

for all types of thermoelasticity and can we provide a numerical scheme?

Solution

Using our approach, it is possible to recover $f(\boldsymbol{x})$ uniquely from the additional final time measurement

$$\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x}),$$

in the presence of a damping term $\mathbf{g}(\partial_t \mathbf{u}) = (g_1(\partial_t \mathbf{u}), g_2(\partial_t \mathbf{u}), g_3(\partial_t \mathbf{u}))$ in the hyperbolic equation of the thermoelastic system

- We use a variational approach which implies uniqueness for all types of thermoelasticity
- We propose a stable iterative algorithm to recover the unknown vector source f by extending the iterative procedure of [Johansson and Lesnic, 2007b] to thermoelastic systems

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00	0.	0000	00000	00	000

Find $\langle \mathbf{u}, \theta, \mathbf{f} \rangle$ such that

$$\begin{array}{ll} \partial_{tt}\mathbf{u} + \mathbf{g}\left(\partial_{t}\mathbf{u}\right) - \alpha\Delta\mathbf{u} - \beta\nabla\left(\nabla\cdot\mathbf{u}\right) + \gamma\nabla\theta &= \mathbf{f}(\mathbf{x}) & \text{ in } \Omega\times(0,T);\\ \partial_{t}\theta - \rho\Delta\theta - k\star\Delta\theta + \gamma\nabla\cdot\partial_{t}\mathbf{u} &= 0 & \text{ in } \Omega\times(0,T);\\ \mathbf{u}(\mathbf{x},t) &= \mathbf{0} & \text{ on } \Gamma\times(0,T);\\ \theta(\mathbf{x},t) &= 0 & \text{ on } \Gamma\times(0,T);\\ \mathbf{u}(\mathbf{x},0) = \overline{\mathbf{u}}_{0}(\mathbf{x}), \quad \partial_{t}\mathbf{u}(\mathbf{x},0) = \overline{\mathbf{u}}_{1}(\mathbf{x}), \quad \theta(\mathbf{x},0) &= \overline{\theta}_{0}(\mathbf{x}) & \text{ in } \Omega, \end{array}$$

and such that the following additional measurement is satisfied (the condition of final overdetermination)

$$\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x}), \qquad \mathbf{x} \in \Omega.$$

- Note that this inverse problem is ill-posed
- A damping term in thermoelastic systems is also considered in [Qin, 2008, Chapter 9], [Kirane and Tatar, 2001], [Oliveira and Charão, 2008],...
- If g is linear, then it is possible to consider the case of non-homogeneous Dirichlet boundary conditions
- Also additional given source terms can be considered if g is linear

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness ● ○○○	Algorithm 00000	Numerical Experiment	Conclusion and further research O O O
Main ideas						

Coupled variational formulation: find $\langle \mathbf{u}, \theta, \mathbf{f} \rangle \in H^1_0(\Omega) \times H^1_0(\Omega) \times L^2(\Omega)$ such that $\mathbf{u}(\mathbf{x}, T) = \boldsymbol{\xi}_T(\mathbf{x})$ and

$$\begin{aligned} (\partial_{tt}\mathbf{u},\varphi) + (\mathbf{g}(\partial_{t}\mathbf{u}),\varphi) + \alpha (\nabla \mathbf{u},\nabla \varphi) + \beta (\nabla \cdot \mathbf{u},\nabla \cdot \varphi) + \gamma (\nabla \theta,\varphi) &= (\mathbf{f},\varphi), \\ (\partial_{t}\theta,\psi) + \rho (\nabla \theta,\nabla \psi) + (k \star \nabla \theta,\nabla \psi) - \gamma (\partial_{t}\mathbf{u},\nabla \psi) &= \mathbf{0}, \end{aligned}$$

for all $\varphi \in \mathbf{H}_{0}^{1}(\Omega)$ and $\psi \in H_{0}^{1}(\Omega)$.

Theorem (Uniqueness)

Let $\langle \mathbf{u}_1, \theta_1, \mathbf{f}_1 \rangle$ and $\langle \mathbf{u}_2, \theta_2, \mathbf{f}_2 \rangle$ satisfy the thermoelastic system. Set $\mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2$, $\mathbf{f} = \mathbf{f}_1 - \mathbf{f}_2$ and $\theta = \theta_1 - \theta_2$ such that $\mathbf{u}(\mathbf{x}, 0) = \mathbf{0}$, $\mathbf{u}(\mathbf{x}, T) = \mathbf{0}$, $\partial_t \mathbf{u}(\mathbf{x}, 0) = \mathbf{0}$ and $\theta(\mathbf{x}, 0) = 0$. Then $\mathbf{f} = \mathbf{0}$ a.e. in Ω and $\langle \mathbf{u}, \theta \rangle = \langle \mathbf{0}, 0 \rangle$ a.e. in $\Omega \times (0, T)$.

- Subtract, equation by equation, the variational formulation corresponding with the different solutions
- > We want to add up both resulting equation such that the mixed term is cancelled out
- A good choice of the test functions is needed:

$$\varphi = \partial_t \mathbf{u}$$
 and $\psi = \theta$

Integrate in time over (0, T) such that

$$\int_{\Omega} \int_{0}^{T} \mathbf{f}(\mathbf{x}) \cdot \partial_{t} \mathbf{u}(\mathbf{x}, t) dt = \int_{\Omega} \left[\mathbf{f}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}, T) - \mathbf{f}(\mathbf{x}) \cdot \mathbf{u}(\mathbf{x}, 0) \right] = 0$$

Introduction 000	Thermoelastic systems	Problem 00	Uniqueness 0	Algorithm 00000	Numerical Experiment	Conclusion and further research OOO			
0 00									
Sketch of the proof of uniqueness for all types thermoelasticity									

Thermoelasticity of type-I

$$\|\partial_t \mathbf{u}(\mathcal{T})\|^2 + \int_0^{\mathcal{T}} \left(\mathbf{g} \left(\partial_t \mathbf{u}_1 \right) - \mathbf{g} \left(\partial_t \mathbf{u}_2 \right), \partial_t \mathbf{u}_1 - \partial_t \mathbf{u}_2 \right) + \|\theta(\mathcal{T})\|^2 + \rho \int_0^{\mathcal{T}} \|\nabla \theta\|^2 = 0$$

- $\|\partial_t \mathbf{u}(T)\| = 0$ gives no guarantee that $\mathbf{u} = \mathbf{0}$
- Assume g componentwise strictly monotone increasing

• Then
$$\mathbf{u}_t = \mathbf{0}$$
 a.e. in $\Omega \times (0, T)$. Therefore,

$$\mathbf{u}(\mathbf{x},0) = \mathbf{0} \Rightarrow \mathbf{u}(\mathbf{x},t) = \mathbf{0}$$
 a.e. in $\Omega \times (0,T)$

•
$$\theta = 0$$
 on $\partial \Omega \Rightarrow \theta = 0$ a.e. in $\Omega \times (0, T)$

This implies that

$$(\mathbf{f}, \boldsymbol{\varphi}) = 0, \qquad \forall \boldsymbol{\varphi} \in \mathbf{H}_0^1(\Omega).$$

From this, we conclude that $\mathbf{f} = \mathbf{0}$ in $\mathbf{L}^2(\Omega)$

Introduction 000	Thermoelastic systems OO O	Problem 00	Uniqueness ○ ○●○	Algorithm 00000	Numerical Experiment	Conclusion and further research				
Sketch of the proof of uniqueness for all types thermoelasticity										

Thermoelasticity of type-II

$$\|\partial_t \mathbf{u}(T)\|^2 + \int_0^T \left(\mathbf{g}(\partial_t \mathbf{u}_1) - \mathbf{g}(\partial_t \mathbf{u}_2), \partial_t \mathbf{u}_1 - \partial_t \mathbf{u}_2 \right) + \|\theta(T)\|^2 + \underbrace{\int_0^T \left(k \star \nabla \theta, \nabla \theta \right)}_{\geqslant 0} = 0$$

- We have $\mathbf{u} = \mathbf{0}$, no guarantee that $\theta = \mathbf{0}$
- Assume that $k \in C^2([0, T])$ is strongly positive definite, i.e.

$$\int_0^T \phi(t)(k\star\phi)(t) \mathrm{d}t \ge C_0 \int_0^T (k\star\phi)^2(t) \mathrm{d}t, \qquad \forall T>0, \forall \phi \in L^1_{\mathrm{loc}}(\Omega)$$

Then

$$\int_0^T \|k \star \nabla \theta\|^2 = 0$$

$$\Rightarrow \int_0^t k(t-s) \nabla \theta(\mathbf{x}, s) ds = 0 \text{ for all } t \in [0, T] \text{ and } \mathbf{x} \in \Omega$$

• Laplace transform is one-to-one $\Rightarrow \nabla \theta = 0$ in $\Omega \times (0, T)$

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness ○ ○○●	Algorithm 00000	Numerical Experiment	Conclusion and further research O O O			
Sketch of the proof of uniqueness for all types thermoelasticity									

Thermoelasticity of type-III

$$\begin{aligned} \|\partial_t \mathbf{u}(T)\|^2 + \int_0^T \left(\mathbf{g} \left(\partial_t \mathbf{u}_1 \right) - \mathbf{g} \left(\partial_t \mathbf{u}_2 \right), \partial_t \mathbf{u}_1 - \partial_t \mathbf{u}_2 \right) \\ &+ \|\theta(T)\|^2 + \rho \int_0^T \|\nabla \theta\|^2 + \underbrace{\int_0^T \left(k \star \nabla \theta, \nabla \theta \right)}_{\geq 0} = 0 \end{aligned}$$

As in the case of thermoelasticity of type-I

▶ It is sufficient that $k \in C^2([0, T])$ is positive definite

$$\int_0^T \phi(t)(k\star\phi)(t)\mathrm{d}t \geqslant 0 \qquad orall T>0, orall \phi\in L^1_{\mathrm{loc}}(\Omega)$$

such that

$$\int_0^T \left(k \star \nabla \theta, \nabla \theta \right) \ge 0$$

Introduction 000	Thermoelastic systems OO O	Problem 00	Uniqueness O OOO	Algorithm •0000	Numerical Experiment	Conclusion and further research
For linear systems	i					

The algorithm is based on a sequence of well-posed direct problems

Theorem (Well-posedness of the direct problem (given **f**))

Assume that $\partial_t \mathbf{f} \in L_2([0, T], \mathbf{L}^2(\Omega)), \ \overline{\mathbf{u}}_0 \in \mathbf{H}^2(\Omega) \cap \mathbf{H}^1_0(\Omega), \ \overline{\mathbf{u}}_1 \in \mathbf{H}^1(\Omega), \ \overline{\theta}_0 \in \mathbf{H}^2(\Omega) \cap \mathbf{H}^1_0(\Omega) \text{ and } \mathbf{0} < \mathbf{g}'(s) \leqslant \mathbf{C} \text{ a.e. in } \mathbb{R}.$ Then, the thermoelastic system has a unique solution $\langle \mathbf{u}, \theta \rangle$ such that

$$\begin{split} \mathbf{u} &\in C^1([0,T],\mathbf{H}_0^1(\Omega)), \quad \partial_{tt}\mathbf{u} \in C([0,T],\mathbf{L}^2(\Omega)), \\ \theta &\in C([0,T],H_0^1(\Omega)), \qquad \theta_t \in C([0,T],L_2(\Omega)). \end{split}$$

In the special situation that $\overline{u}_0(x) = 0$, $\overline{u}_1(x) = 0$ and $\overline{\theta}_0 = 0$, the following energy estimate is valid

$$\max_{\in [0,T]} \left\{ \left\| \nabla \mathbf{u}(t) \right\|^2 + \left\| \nabla \partial_t \mathbf{u}(t) \right\|^2 + \left\| \nabla \theta(t) \right\|^2 + \left\| \partial_t \theta(t) \right\|^2 \right\} \leqslant C \left\| \mathbf{f} \right\|^2.$$

- [Muñoz Rivera and Qin, 2002] proved the global existence and uniqueness of solutions for the one dimensional type-III thermoelastic system when f = 0 and g = 0
- In the same situation, a more dimensional case is studied in [Zhang and Zuazua, 2003]
- More general (linear) setting: [Lions and Magenes, 1972, Slodička, 1989a, Slodička, 1989b]

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness O OOO	Algorithm 0000	Numerical Experiment	Conclusion and further research

For linear systems

By the principle of linear superposition, we can study

$$\begin{array}{ll} \partial_{tt} \mathbf{u} + \mathbf{g} \left(\partial_{t} \mathbf{u} \right) - \alpha \Delta \mathbf{u} - \beta \nabla \left(\nabla \cdot \mathbf{u} \right) + \gamma \nabla \theta &= \mathbf{f} & (\mathbf{x}, t) \in Q_T; \\ \partial_t \theta - \rho \Delta \theta - \mathbf{k} \star \Delta \theta + \gamma \nabla \cdot \partial_t \mathbf{u} &= \mathbf{0} & (\mathbf{x}, t) \in Q_T; \\ \mathbf{u}(\mathbf{x}, t) &= \mathbf{0} & (\mathbf{x}, t) \in \Sigma_T; \\ \theta(\mathbf{x}, t) &= \mathbf{0} & (\mathbf{x}, t) \in \Sigma_T; \\ \mathbf{u}(\mathbf{x}, 0) = \partial_t \mathbf{u}(\mathbf{x}, 0) = \mathbf{0}, & \theta(\mathbf{x}, 0) &= \mathbf{0} & \mathbf{x} \in \Omega; \end{array}$$

together with the transformed final measurement, i.e.

$$\mathbf{u}(\mathbf{x}, T) = \widetilde{\boldsymbol{\xi}}_T(\mathbf{x}), \qquad \mathbf{x} \in \Omega$$

• Define the corresponding solution operator $M(t) : \mathbf{L}^2(\Omega) \to \mathbf{L}^2(\Omega)$ by

$$M(t)\mathbf{f}=\mathbf{u}(\cdot,t).$$

- M(t) ∈ L (L²(Ω), L²(Ω)) because the initial conditions are zero
- Finding a solution to the inverse problem is then equivalent to solving the following operator equation

$$M(T)\mathbf{f}=\widetilde{\boldsymbol{\xi}}_{\mathcal{T}}.$$

Introduction Thermoelastic system	s Problem 00	Uniqueness O OOO	Algorithm 00●00	Numerical Experiment	Conclusion and further research OOO		
For linear systems							

Algorithm for finding the source term if \mathbf{g} is linear

- (i) Choose an initial guess $\mathbf{f}_0 \in \mathbf{L}^2(\Omega)$. Let $\langle \mathbf{u}_0, \theta_0 \rangle$ be the solution to the thermoelastic system with $\mathbf{f} = \mathbf{f}_0$
- (ii) Assume that \mathbf{f}_k and $\langle \mathbf{u}_k, \theta_k \rangle$ have been constructed. Let $\langle \mathbf{w}_k, \eta_k \rangle$ solve the thermoelastic system with $\mathbf{f}(\mathbf{x}) = \mathbf{u}_k(\mathbf{x}, T) \widetilde{\boldsymbol{\xi}}_T(\mathbf{x})$
- (iii) Define

$$\mathbf{f}_{k+1}(\mathbf{x}) = \mathbf{f}_k(\mathbf{x}) - \kappa \mathbf{w}_k(\mathbf{x}, T), \quad \mathbf{x} \in \Omega$$

where $\kappa > 0$ (relaxation parameter), and let $\langle \mathbf{u}_{k+1}, \theta_{k+1} \rangle$ solve the thermoelastic system with $\mathbf{f} = \mathbf{f}_{k+1}$

(*iv*) The procedure continues by repeating steps (*ii*) and (*iii*) until a desired level of accuracy is achieved (see further)

Problem

How to proof the convergence of this scheme?

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness O OOO	Algorithm 000€0	Numerical Experiment	Conclusion and further research
For linear system	ns					

Convergence of the proposed algorithm

<u>Proof</u>: The linearity of M(T) implies

$$\begin{aligned} \widetilde{\mathbf{f}}_{k+1} &= \mathbf{f}_k - \kappa \mathbf{w}_k(\cdot, T) \\ &= \mathbf{f}_k - \kappa \mathcal{M}(T) \left(\mathbf{u}_k(\cdot, T) - \widetilde{\boldsymbol{\xi}}_T \right) \\ &= \mathbf{f}_k - \kappa \mathcal{M}(T) \left(\mathcal{M}(T) \mathbf{f}_k - \mathcal{M}(T) \mathbf{f} \right) \\ &= \mathbf{f}_k - \kappa \mathcal{M}(T) \mathcal{M}(T) \left(\mathbf{f}_k - \mathbf{f} \right) \end{aligned}$$

Therefore,

$$\mathbf{f}_{k+1} - \mathbf{f} = (I - \kappa M(T)M(T))(\mathbf{f}_k - \mathbf{f})$$

- ► This is a Landweber-Friedmann iteration scheme for solving the operator equation M(T)f = ξ̃_T
- If 0 < κ < ||M(T)||⁻², then the sequence f_k converges to f in L²(Ω) for arbitrary f₀ ∈ L²(Ω) [Engl et al., 1996, Theorem 6.1]-[Slodička and Melicher, 2010, Theorem 3]
- $\mathbf{u}_k \to \mathbf{u} \text{ and } \theta_k \to \theta \text{ in } C([0, T], \mathbf{H}_0^1(\Omega))$

Introduction 000	Thermoelastic systems OO O	Problem 00	Uniqueness 0 000	Algorithm 0000●	Numerical Experiment	Conclusion and further research
For linear system	S					

Stopping criterion

The case is considered when there is some error in the additional measurement, i.e.

$$\|\boldsymbol{\xi}_{T}-\boldsymbol{\xi}_{T}^{\mathsf{e}}\|\leqslant \boldsymbol{e},$$

with the noise level e > 0

- \blacktriangleright This implies that also $\widetilde{\pmb{\xi}}_{\mathcal{T}}$ is perturbated, denoted by $\widetilde{\pmb{\xi}}_{\mathcal{T}}^{e}$
- ► The solutions **f**^e_k, **u**^e_k and θ^e_k at iteration k are obtained by using the algorithm
- ► The discrepancy principle [Morozov, 1966] suggests to finish the iterations at the smallest index $k = k(e, \kappa)$ for which

$$E_{k,\mathbf{u}_{T}} = \left\|\mathbf{u}_{k}^{e}(\cdot,T) - \widetilde{\boldsymbol{\xi}}_{T}^{e}\right\| \leqslant e$$

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00	00	0 000	00000	•0	000

Numerical experiment: setting

- ▶ 1D linear model of type-I thermoelasticity is considered: $\Omega = [0, 1]$ and T = 1, g = I
- The forward coupled problems in this procedure are discretized in time according to the backward Euler method with timestep 0.001
- At each time-step, the resulting elliptic coupled problems are solved numerically by the finite element method (FEM) using first order (P1-FEM) Lagrange polynomials for the space discretization. A fixed uniform mesh consisting of 50 intervals is used
- The unknown source in the experiment is f(x) = x(x-1)
- Final in time measurement: $\xi_1(x) = 4x(x-1) + \text{uncorrelated noise}$
- Implementation: in FEniCS

Introduction 000	Thermoelastic systems OO O	Problem 00	Uniqueness 0 000	Algorithm 00000	Numerical Experiment ○●	Conclusion and further research

(a) (b) Figure : The exact solution and the numerical solution for the source for $\tilde{e} = 1\%$ (a) and $\tilde{e} = 5\%$ (b) for different values of κ .

Table : The stopping iteration number $k = k(e(\tilde{e}), \kappa)$ for the numerical experiment

$\kappa \setminus \tilde{e}$	1%	3%	5%
1	151	108	107
10	14	10	10
50	3	2	2

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness O OOO	Algorithm 00000	Numerical Experiment	Conclusion and further research ●○○

Conclusion:

- It is possible to recover uniquely an unknown vector source in all types of damped thermoelastic systems when an additional final in time measurement of the displacement is measured
- ► A numerical algorithm in a linear case gives accurate shape recovery

Future research:

- More numerical experiments
- Testing different stopping criteria (up to now, no better results)
- Recovery of time-dependent sources in thermoelastic systems
- Inverse kernel problems for thermoelasticity
- ▶ Goal: with numerical scheme!

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness 0 000	Algorithm 00000	Numerical Experiment	Conclusion and further research $\bigcirc \bullet \bigcirc$

References I

Bellassoued, M. and Yamamoto, M. (2011).

Carleman estimates and an inverse heat source problem for the thermoelasticity system. Inverse Problems, 27(1):015006.

Cannon, J. (1968).

Determination of an unknown heat source from overspecified boundary data. *SIAM Journal on Numerical Analysis*, 5(2):275–286.

Engl, H. W., Hanke, M., and Neubauer, A. (1996).

Regularization of Inverse Problems, volume 375 of Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht.

Hasanov, A. (2007).

Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach.

Journal of Mathematical Analysis and Applications, 330(2):766 - 779.

Isakov, V. (1990).

Inverse source problems. Providence, RI: American Mathematical Society.

Introduction 000	Thermoelastic systems 00 0	Problem 00	Uniqueness 0 000	Algorithm 00000	Numerical Experiment	Conclusion and further research $\bigcirc \bullet \bigcirc$

References II


```
Johansson, B. T. and Lesnic, D. (2007a).
```

A variational method for identifying a spacewise-dependent heat source. *IMA Journal of Applied Mathematics*, 72(6):748–760.

Johansson, T. and Lesnic, D. (2007b).

Determination of a spacewise dependent heat source.

J. Comput. Appl. Math., 209(1):66-80.

Kirane, M. and Tatar, N.-E. (2001).

A nonexistence result to a cauchy problem in nonlinear one dimensional thermoelasticity. *Journal of Mathematical Analysis and Applications*, 254(1):71 - 86.

Lions, J. L. and Magenes, E. (1972).

Non-homogeneous boundary value problems and applications, volume 181 of Non-homogeneous Boundary Value Problems and Applications. Springer Barlin Haidelberg

Springer Berlin Heidelberg.

Morozov, V. A. (1966).

On the solution of functional equations by the method of regularization. *Soviet Math. Dokl.*, 7:414–417.

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00	00	0000	00000	00	000

References III

Muñoz Rivera, J. E. and Qin, Y. (2002).

Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory.

Nonlinear Anal.: Theory, Methods & Applications, 51(1):11-32.

Oliveira, J. C. and Charão, R. C. (2008).

Stabilization of a locally damped thermoelastic system. *Comput. Appl. Math.*, 27(3):319–357.

Prilepko, A. I. and Solov'ev, V. V. (1987).

Solvability theorems and rothe's method for inverse problems for a parabolic equation. i. *Differ. Equations*, 23(10):1230–1237.

Qin, Y. (2008).

Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkhäuser.

Rundell, W. and Colton, D. L. (1980).

Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data.

Applicable Analysis, 10(3):231–242.

incroduction incrine	Jelastic systems in	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000 00		00	0000	00000	00	000

References IV

Slodička, M. (1989a).

Application of Rothe's method to evolution integrodifferential systems. *Commentat. Math. Univ. Carol.*, 30(1):57–70.

Slodička, M. (1989b).

Smoothing effect and regularity for evolution integrodifferential systems. *Commentat. Math. Univ. Carol.*, 30(2):303–316.

Slodička, M. and Melicher, V. (2010).

An iterative algorithm for a cauchy problem in eddy-current modelling. *Appl. Math. Comput.*, 217(1):237–246.

Solov'ev, V. V. (1989).

Solvability of the inverse problem of finding a source, using overdetermination on the upper base for a parabolic equation.

Differ. Equations, 25(9):1114-1119.

Wu, B. and Liu, J. (2012).

Determination of an unknown source for a thermoelastic system with a memory effect. *Inverse Problems*, 28(9):095012.

000	000

References V

Zhang, X. and Zuazua, E. (2003). Decay of solutions of the system of thermoelasticity of type-III. *Communications in Contemporary Mathematics*, 05(01):25–83.

Introduction	Thermoelastic systems	Problem	Uniqueness	Algorithm	Numerical Experiment	Conclusion and further research
000	00 0	00	0 000	00000	00	000

Figure : The exact solution and the numerical solution for the discontinuous source for $\tilde{e}=1\%$ and $\kappa=10.$