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I Ω ⊂ Rd : thin beam (d = 1) or thin plate (d = 2) with Lipschitz
continuous boundary Γ

I T : final time
I QT := Ω× (0,T ) and ΣT := Γ× (0,T )
I Let X be a Banach space with norm ‖·‖X

I Ck ([0,T ],X) with k ∈ N: consists of k-times continuously differentiable
functions w : [0,T ]→ X with

∑k
j=0 maxt∈[0,T ] ‖w (j)(t)‖X <∞

I Lp ((0,T ),X) with 1 6 p < +∞: consists of functions w : (0,T )→ X

satisfying
(∫ T

0 ‖w(t)‖p
X dt
) 1

p
<∞

I L∞ ((0,T ),X): consists of functions w : (0,T )→ X that are essentially
bounded, i.e.
‖w‖L∞((0,T ),X) = inf

{
B : ‖w(t)‖X ≤ B for almost all t ∈ (0,T )

}
<∞

I H1((0,T ),X): consists of functions u : (0,T )→ X such that

‖u‖H1((0,T ),X) =
(∫ T

0 ‖u(t)‖2
X + ‖u′(t)‖2

X dt
)1/2

<∞
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I Dynamic vibration of a simply supported non-homogeneous Euler-Bernoulli
beam (d = 1) and Kirchhoff-Love plate (d = 2) is governed by the
following problem (for small deflection u):

ρ∂ttu + µ∂tu + ∆(k∆u)− T r ∆u = p in QT ,
u = 0 on ΣT ,

k∆u = 0 on ΣT ,
u(x, 0) = ũ0(x) x ∈ Ω,

∂tu(x, 0) = ṽ0(x) x ∈ Ω

(1)

I u(x, t): the displacement in z-direction from the equilibrium position u ≡ 0
I ũ0: initial deflection, ṽ0: initial velocity
I p(x, t): load distribution, ρ(x, t): mass density, µ(x, t): damping

coefficient, Tr (x, t): traction force
I

k(x, t) =
{

flexural rigidity d = 1
bending stiffness d = 2
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Inverse Source Problem (ISP): determination spatial load source

Inverse Source Problem (ISP)

Determine f (x) in
ρ∂ttu + µ∂tu + ∆(k∆u)− T r ∆u = f (x)h(t) in QT ,

u = 0 on ΣT ,
k∆u = 0 on ΣT ,

u(x, 0) = ũ0(x) x ∈ Ω,
∂tu(x, 0) = ṽ0(x) x ∈ Ω,

(2)

from the deflection u at final time t = T :

u(·,T ) = ξT (·) (3)
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Inverse Source Problem (ISP): determination spatial load source

Literature overview

I [Hasanov, 2009]:
I Determine p(x , t) in a vibrating cantilevered beam of the form

ρ(x)ü + (k(x)u′′)′′ = p(x , t)

from the measured data u(x ,T ) or ut (x ,T ) by minimization of a cost
functional

I The Fréchet gradients of the cost functionals are derived via the solutions of
corresponding adjoint (backward beam) problems

I [Hasanov, 2009, Lemma 7.2]: uniqueness of the solution can be obtained
when a positivity condition holds on the solution

I [Hasanov and Baysal, 2015]: the theory developed in [Hasanov, 2009] is
illustrated by numerical examples for the problem of determing f (x) from
the final state when p(x , t) = f (x)h(t)
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Well-posedness

I V := H2(Ω) ∩ H1
0(Ω)

I The norms
∑
|α|62 ‖Dαu‖2 and ‖∆u‖2 are equivalent in V

I Additional term λu is considered in (2) because these term appears in the
forward problems that are involved when solving the ISP later

I Variational formulation of problem (1):

Find
u(t) ∈ V with ∂tu(t) ∈ V and ∂ttu(t) ∈ L2(Ω)

such that

(ρ(t)∂ttu(t), ϕ) + (µ(t)∂tu(t), ϕ) + (λ(t)u(t), ϕ)
+ (k(t)∆u(t),∆ϕ)− (T r (t)∆u(t), ϕ) = (p(t), ϕ) (4)

for all ϕ ∈ V and a.a. t ∈ (0,T ]
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Well-posedness

Assumptions on data ((x, t) ∈ Ω× [0,T ])

0 < ρ̃0 6 ρ(x, t) 6 ρ̃1, |∂tρ(x, t)| 6 ρ̃2,

|µ(x, t)| 6 µ̃1, |∂tµ(x, t)| 6 µ̃2,

|λ(x, t)| 6 λ̃1, |∂tλ(x, t)| 6 λ̃2,

0 < k̃0 6 k(x, t) 6 k̃1, |∂tk(x, t)| 6 k̃2, |∂ttk(x, t)| 6 k̃3,

|∇k(x, 0)|e 6 k̃4, |∆k(x, 0)| 6 k̃5,

|T r (x, t)| 6 T̃1, |∂tT r (x, t)| 6 T̃2,

p ∈ H1 ((0,T ), L2(Ω)
)
,

ũ0 ∈ H4(Ω) ∩ H1
0(Ω), k(x, 0)∆ũ0(x) = 0, x ∈ Γ,

ṽ0 ∈ H2(Ω)

and refer to these conditions as (?)
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Well-posedness

Theorem (Well-posedness of the direct problem)
Let the conditions (?) be fulfilled. Then, there exists a unique weak solution to
problem (4) satisfying

u ∈ C ([0,T ],V )

with
∂tu ∈ C

(
[0,T ], L2(Ω)

)
∩ L2 ((0,T ),V )

and
∂ttu ∈ L2 ((0,T ), L2(Ω)

)
.
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Proof of uniqueness

First step: divide the governing partial differential equation
(PDE) in (2) by the known (given) function h(t)

I Assumed that h 6= 0, i.e. h(t) > 0 (or h(t) < 0) for all t ∈ [0,T ]
I Let

v(x, t) = u(x, t)
h(t) and α(t) = h′(t)

h(t)
I PDE in (2) can be rewritten in terms of the unknown v as follows

ρ∂ttv +(µ+ 2ρα) ∂tv +
(
µα + ρα2 + ρα′

)
v +∆(k∆v)−Tr ∆v = f (x), (5)

with 

v = 0 on ΣT ,
k∆v = 0 on ΣT ,

v(x, 0) = ũ0(x)
h(0) x ∈ Ω,

∂tv(x, 0) = ṽ0(x)
h(0) −

ũ0(x)
h(0) α(0) x ∈ Ω,

v(x,T ) = ξT (x)
h(T ) x ∈ Ω

(6)
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Proof of uniqueness

I Variational formulation corresponding forward problem:

find
v(t) ∈ V with ∂tv(t) ∈ V and ∂ttv(t) ∈ L2(Ω)

such that

(ρ(t)∂ttv(t), ϕ) + ((µ(t) + 2ρ(t)α(t)) ∂tv(t), ϕ)
+
((
µ(t)α(t) + ρ(t)α(t)2 + ρ(t)α′(t)

)
v(t), ϕ

)
+ (k(t)∆v(t),∆ϕ)− (Tr (t)∆v(t), ϕ) = (f , ϕ) , (7)

for all ϕ ∈ V and a.a. t ∈ (0,T ]
I Following Theorem 1, this formulation is well-posed for given f ∈ L2(Ω) if

the conditions (?) are satisfied and

|α(t)| 6 α1, |α′(t)| 6 α2, |α′′(t)| 6 α3, t ∈ [0,T ],

and refer to these conditions as (??)
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Proof of uniqueness

Theorem (Uniqueness)
Let the conditions (?) and (??) be satisfied. Moreover, assume that Tr is solely
time dependent with

T ′r (t) 6 0, t ∈ [0,T ],

and

ξT ∈ L2(Ω), α(t) > 0, ∂tρ 6 0, µ > µ0 > 0,
∂tk 6 0, and ∂t

(
µα + ρα2 + ρα′

)
6 0.

Then, there exists at most one f ∈ L2(Ω) such that problem (2) together with
condition (3) holds.
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Proof of uniqueness

Proof uniqueness ISP I

I Variational approach, proof by contradiction
I Suppose two solutions 〈u1, f1〉 and 〈u2, f2〉 to (2)-(3)
I Set u = u1 − u2, v = v1 − v2 and f = f1 − f2

I Then u(x, 0) = 0, ∂tu(x, 0) = 0 and u(x,T ) = 0
I Therefore, also v(x, 0) = 0, ∂tv(x, 0) = 0 and v(x,T ) = 0
I First, we prove that v = 0 (thus u = 0) and then we show that f = 0
I Subtract the variational formulation corresponding with the different

solutions
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Proof of uniqueness

Proof uniqueness ISP II
I Choose ϕ = ∂tv(t) as testfunction and integrate in time over (0,T ) to

obtain that∫ T

0
(ρ(t)∂ttv(t), ∂tv(t)) dt +

∫ T

0
((µ(t) + 2ρ(t)α(t)) ∂tv(t), ∂tv(t)) dt

+
∫ T

0

((
µ(t)α(t) + ρ(t)α2(t) + ρ(t)α′(t)

)
v(t), ∂tv(t)

)
dt

+
∫ T

0
(k(t)∆v(t),∆∂tv(t)) dt

−
∫ T

0
(Tr (t)∆v(t), ∂tv(t)) dt =

∫ T

0
(f , ∂tv(t)) dt = (f , v(T )− v(0)) = 0

I Grönwall’s lemma cannot be applied!
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Proof of uniqueness

Proof uniqueness ISP III

I The first four terms in the LHS can be handled as follows:∫ T

0

(ρ(t)∂tt v(t), ∂t v(t)) dt = 1
2

∥∥∥√ρ(T )∂t v(T )
∥∥∥2
− 1

2

∫ T

0

(
∂tρ, (∂t v)2

)
> 0,∫ T

0

((µ + 2ρα) ∂t v(t), ∂t v(t)) dt
α>0
> µ0

∫ T

0

‖∂t v‖2
,∫ T

0

((
µα + ρα

2 + ρα
′
)

v(t), ∂t v(t)
)

dt = − 1
2

∫ T

0

(
∂t (µα + ρα

2 + ρα
′), v2

)
> 0,∫ T

0

(k(t)∆v(t),∆∂t v(t)) dt = − 1
2

∫ T

0

(
∂t k, (∆v)2

)
+ 1

2

∥∥∥√k(T )∆v(T )
∥∥∥2

> 0

I The traction term is the most tricky one to handle
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Proof of uniqueness

Proof uniqueness ISP IV
I If Tr is solely time dependent, then

−
∫ T

0
Tr (t) (∆v(t), ∂tv(t)) dt = 1

2

∫ T

0
Tr (t)

∫
Ω
∂t |∇v(t)|2 dt

= − 1
2

∫ T

0
T ′r (t) ‖∇v(t)‖2 dt > 0

I We get that

0 6 µ0

∫ T

0
‖∂tv(t)‖2 dt 6 0

Therefore, v = 0 a.e. in QT
I Substituting v = 0 in (7) gives

(f , ϕ) = 0, ∀ϕ ∈ V .

We conclude by [Zeidler, 1990, Proposition 18.2] that f = 0 in L2(Ω)
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Counterexamples uniqueness

h(t) is changing sign
I Problem:

utt + ut + uxxxx − uxx = h(t)f (x) (x , t) ∈ (0, π)2,
u(0, t) = u(π, t) = 0 t ∈ (0, π),

uxx (0, t) = uxx (π, t) = 0 t ∈ (0, π),
u(x , 0) = 0 x ∈ (0, π),

ut(x , 0) = 0 x ∈ (0, π),
u(x , π) = 0 x ∈ (0, π),

where h(t) = (t + 1) sin(t) + (t + 2) cos(t) in [0, π]
I Solutions: next to (u, f ) = (0, 0), also

u(x , t) = sin(x) sin(t)t,
f (x) = sin(x)
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Counterexamples uniqueness

α(t) is changing sign I

I Problem:

utt + ut + uxxxx − uxx = h(t)f (x) (x , t) ∈ (0, π)× (0, 4),
u(0, t) = u(π, t) = 0 t ∈ (0, 4),

uxx (0, t) = uxx (π, t) = 0 t ∈ (0, 4),
u(x , 0) = 0 x ∈ (0, π),

ut(x , 0) = 0 x ∈ (0, π),
u(x , 4) = 0 x ∈ (0, π),

where h(t) = A + t cos(t) > 0 in [0, 4] with

A :=
2 exp(−2) sin

(
2
√

7
)√

7 + 14 exp(−2) cos
(

2
√

7
)

+ 14 cos (4) + 21 sin (4)
−7 + exp(−2) sin

(
2
√

7
)√

7 + 7 exp(−2) cos
(

2
√

7
)
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Counterexamples uniqueness

α(t) is changing sign II
I Solutions: next to (u, f ) = (0, 0), also

f (x) = sin(x),
u(x , t) = f (x)Φ(t),

with

Φ(t) = − 1
14 exp

(
− t

2

)
sin
(√

7
2 t
)

(−2 + A)
√

7

+ exp
(
− t

2

)
cos
(√

7
2 t
)(

1− A
2

)
+ 1

2 (t − 2) cos (t) + 1
2 (t − 1) sin (t) + A

2
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Counterexamples uniqueness

T ′r (t) is changing sign
I Problem:

utt + ut + uxxxx −
50

sin(t) uxx = h(t)f (x) (x , t) ∈ (0, π)2,

u(0, t) = u(π, t) = 0 t ∈ (0, π),
uxx (0, t) = uxx (π, t) = 0 t ∈ (0, π),

u(x , 0) = 0 x ∈ (0, π),
ut(x , 0) = 0 x ∈ (0, π),
u(x , π) = 0 x ∈ (0, π),

where h(t) = 50t + (t + 2) cos(t) + sin(t) > 0, α(t) > 0 and(
α + α2 + α′

)′
6 0 in [0, π]

I Solutions: besides (u, f ) = (0, 0), also

u(x , t) = sin(x) sin(t)t,
f (x) = sin(x)
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Principle of linear superposition
I v∗∗ is the unique solution (see Theorem 1) to (5)-(6) when f = 0
I Solving problem (2)-(3) is equivalent with solving

ρ∂ttv∗ + (µ+ 2ρα) ∂tv∗ +
(
µα + ρα2 + ρα′

)
v∗

+ ∆(k∆v∗)− Tr ∆v∗ = f (x), (8)

with 
v∗ = 0 on ΣT ,

k∆v∗ = 0 on ΣT ,
v∗(x, 0) = 0 x ∈ Ω,

∂tv∗(x, 0) = 0 x ∈ Ω,

(9)

and
v∗(·,T ) = ξT (·)

h(T ) − v∗∗(·,T ) =: ξ̃T (·)
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I Landweber-Fridman iterative regularization method
[Landweber, 1951, Fridman, 1956]

I Define the input-output operator MT ∈ L
(
L2(Ω), L2(Ω)

)
by

MT f = v(·,T ),

with v ∈ C ([0,T ],V ) the unique solution to (8)-(9) for given f
I Finding a solution to the ISP is equivalent to solving

MT f = ξ̃T ,

or equivalent to solving the fixed point equation

f = f + ωMT

(
ξ̃T −MT f

)
, ω > 0

I Method of successive approximations (k ∈ N):

fk := fk−1 − ωMT

(
MT fk−1 − ξ̃T

)
,

with an initial guess f0 ∈ L2(Ω)
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Stopping criterion

I Error in the additional measurement, i.e.

‖ξT − ξe
T‖ 6 e,

where e(ẽ) depends on the noise level with magnitude ẽ > 0
I Thus also ξ̃T is perturbed, denote by ξ̃e

T
I The functions f e

k and v e
k are obtained by using the algorithm

I Discrepancy principle by Morozov [Morozov, 1966]: finish the iterations at
the smallest index k = k(e, ω) for which

Ek :=
∥∥∥v e

k (·,T )− ξ̃e
T

∥∥∥ 6 τ0e,

for some τ0 > 1 (typically between 1 and 1.2)
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(i) Determine v∗∗ and the final overdetermination ξ̃e
T ;

(ii) Initial guess f0 ∈ L2(Ω). Let v0 be the solution to (8)-(9) with f = f0;
(iii) Let

ωk = 1
‖fk‖

for k > 1, ω0 = 1;

(iv) Assume that fk−1 and vk−1 have been constructed. Let wk−1 solve (8)-(9) with
f (x) = vk−1(x ,T )− ξ̃e

T (x);
(v) Define

fk (x) = fk−1(x)− ωk−1wk−1(x ,T ), a.a. x ∈ Ω,
and let vk solve (8)-(9) with f = fk . Then,
if Ek−1 > Ek :

k = k + 1
else:

repeat step (v) with ωk−1 = ωk−1
2 ;

(vi) Repeat steps (iv) and (v) until
I Ek 6 τ0e, a maximum number of iterations is reached, wk < 1× 10−12;

(vii) Suppose that the algorithm is stopped after k̃ iterations with corresponding
solution 〈vk̃ , fk̃〉. Then, the approximating solution to the original problem (2)-(3)
is given by 〈h(v∗∗ + vk̃ ), fk̃〉. 24 / 35
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Numerical experiment: setting

I A simply supported Euler-Bernoulli beam is considered
I Ω = [0, 1], T = 0.02
I ρ = µ = k = Tr = 1, h(t) = 1 and ũ0 = ṽ0 = 0
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Numerical experiment: setting
I Forward problems are discretized in time according to the backward Euler

method with timestep 0.00001
I To solve the forward problems using Lagrange finite element basis

functions, the equation is split into two second-order equations
I At each time step, the resulting elliptic mixed problems are solved

numerically by the finite element method using first order (P1–FEM)
Lagrange polynomials for the space discretization (the number of finite
elements is taken to be equal to 200)

I A randomly generated uncorrelated noise is added to the additional
condition in order to simulate the inherent errors present in real
measurements (noise×N (0, 1))

I
The finite element library DOLFIN [Logg and Wells, 2010,
Logg et al., 2012b] from the FEniCS project
[Logg et al., 2012a] is used
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The exact sources used in the experiments are given by

f 1(x) = 0.00001× x(1− x),
f 2(x) = 0.00001× x(x − 1)2,

f 3(x) = 0.00001
2π × sin(2πx),

f 4(x) = 0.000001× exp
(
−20(x − 0.5)2) ,

f 5(x) =


0 0 6 x 6 1

3
0.000006×

(
x − 1

3
) 1

3 6 x 6 1
2

−0.000006×
(
x − 2

3
) 1

2 6 x 6 2
3

0 2
3 6 x 6 1

and

f 6(x) =


0 0 6 x < 1

3
0.000001 1

3 6 x 6 2
3

0 2
3 < x 6 1
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Figure: The exact sources f 1, f 2 and f 3 and its corresponding numerical solution,
retrieved using various levels of noise in the additional measurement (a,b,c).
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Figure: The exact sources f 4, f 5 and f 6 and its corresponding numerical solution,
retrieved without noise on the measurement (a,b,c).
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Figure: The exact sources f 4, f 5 and f 6 and its corresponding numerical solution,
retrieved using various levels of noise in the additional measurement (a,b,c).
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Table: The stopping iteration number k̃, the CPU time (mins) and the value of the
relaxation parameter at k̃ for ẽ = 1% and 5%.

ẽ = 1% k̃ CPU time ωk̃−1 ẽ = 5% k̃ CPU time ωk̃−1
f 1 149 170 546694.3 f 1 64 90 541650.8
f 2 221 242 1024892.8 f 2 123 145 1003726.2
f 3 192 212 885593.9 f 3 140 161 873533.3
f 4 98 123 1888012.6 f 4 63 91 1852594.9
f 5 4346 4183 250957.6 f 5 510 510 3332767.9
f 6 5000 4764 1835035.1 f 6 67 92 1834481.4

I The attainability of the stopping criterion becomes faster if ẽ increases
I Also for large noise level (e.g. ẽ = 5%), an accurate approximation for the

sources is obtained
I The algorithm is more sensitive for increasing the amount of noise in the

experiment
I Drawback: value relaxation parameter, long CPU time
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Conclusions

I ISP associated with the dynamic vibration of a simply supported beam and
plate was considered

I Also other boundary conditions can be considered
I Uniqueness of a solution to the IP is proved
⊕ without additional assumptions on the solution

I An adaptive Landweber-Fridman type iterative regularization method is
used to obtain an approximation of the unknown load source

I The one-dimensional numerical experiments carried out were implemented
using the FEM and validated the stability of the proposed iterative
procedure

I Disadvantage: process is time consuming
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Future research

I Validity of the numerical scheme?
I Nondimensionalization
I Comparison of the results with faster iterative methods such as the

conjugate gradient method
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M21: Inverse Problems in Science and Engineering
Inverse problems arise in many areas of mathematical physics and applications
are rapidly expanding to geophysics, chemistry, medicine and engineering. This
minisymposium focuses on both analytical and computational methods for
inverse problems in Science and Engineering. The approaches developed for
such problems generally include numerical approximations, stability analysis,
proofs of uniqueness and/or existence of the solution.

The minisymposium aims at bringing together well established scientists as well
as young researchers working on inverse problems for partial differential
equations to honour one of the experts in this field, Professor Marian
Slodička, on the occasion of his 60th birthday. The topics of the
minisymposium range from the mathematical modelling and the theoretical
analysis of inverse problems for partial differential equations where some
parameters (right-hand side, kernel, diffusion coefficient, etc.), unknown
boundary condition(s) or portion of the boundary are to be found, to the
development of efficient numerical schemes and their practical implementations.
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