A1 publications (published in ISI Web of Science™ indexed journals)

Visit also my personal page in the Ghent University Academic Bibliography. Or take a look on my ORCID page. An asterisk (*) behind my name denotes that I am the corresponding author of the article.
  1. F. Maes and K. Van Bockstal, Numerical Algorithms for the Reconstruction of Space-Dependent Sources in Thermoelasticity (2024, link arXiv, submitted)
  2. Y. Kian, M. Slodička, E. Soccorsi and K. Van Bockstal, On time-fractional partial differential equations of time-dependent piecewise constant order (2025-01, link arXiv, link journal)
  3. V. C. Le, M. Slodička and K. Van Bockstal, A numerical scheme for solving an induction heating problem with moving non-magnetic conductor, Computers and Mathematics with Applications (2024-10, link arXiv, link journal)
  4. K. Van Bockstal*, A. S. Hendy and M. A. Zaky, Space-dependent variable-order time-fractional wave equation: existence and uniqueness of its weak solution, Quaestiones Mathematicae (2023-08, link)
  5. K. Van Bockstal*, M. A. Zaky and A. S. Hendy, On the Rothe-Galerkin spectral discretisation for a class of variable fractional-order nonlinear wave equations, Fractional Calculus and Applied Analysis (2023-07, link arXiv, link journal)
  6. F. Maes and K. Van Bockstal*, Existence and uniqueness of a weak solution to fractional single-phase-lag heat equation, Fractional Calculus and Applied Analysis (2023-06, link arXiv, link journal)
  7. M. A. Zaky, K. Van Bockstal, T. R. Taha, D. Suragan and A. S. Hendy, An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay, Journal of Computational and Applied Mathematics (2023-03, link)
  8. A. S. Hendy, M. A. Zaky and K. Van Bockstal, Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction-diffusion equations, Nonlinear Dynamics (2023-02, link)
  9. K. Van Bockstal*, M. A. Zaky and A. S. Hendy, On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay, Communications in Nonlinear Science and Numerical Simulation (2022-12, link)
  10. A. S. Hendy and K. Van Bockstal*, A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions, Numerical Algorithms (2022-06, link)
  11. K. Van Bockstal* and L. Marin, Finite element method for the reconstruction of a time-dependent heat source in isotropic thermoelasticity systems of type-{III}, Zeitschrift für angewandte Mathematik und Physik (2022-06, link)
  12. F. Maes and K. Van Bockstal*, Uniqueness for inverse source problems of determining a space-dependent source in thermoelastic systems, Journal of Inverse and Ill-Posed Problems (2022-04, link)
  13. V. C. Le, M. Slodička and K. Van Bockstal*, Existence of a weak solution to a nonlinear induction hardening problem with Leblond-Devaux model for a steel workpiece, Communications in Nonlinear Science and Numerical Simulation (2022-04, link)
  14. V. C. Le, M. Slodička and K. Van Bockstal*, A space-time discretization for an electromagnetic problem with moving non-magnetic conductor, Applied Numerical Mathematics (2022-03, link)
  15. V. C. Le, M. Slodička and K. Van Bockstal, A full discretization for the saddle-point approach of a degenerate parabolic problem involving a moving body, Applied Mathematics Letters (2022-02, link)
  16. A. S. Hendy and K. Van Bockstal*, On a reconstruction of a solely time-dependent source in a time-fractional diffusion equation with non-smooth solutions, Journal of Scientific Computing (2022-01, link)
  17. K. Van Bockstal*, Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order, Advances in Difference Equations (2021-12, link)
  18. F. Maes and K. Van Bockstal*, Thermoelastic problem in the setting of dual-phase-lag heat conduction: Existence and uniqueness of a weak solution, Journal of Mathematical Analysis and Applications (2021-11, link)
  19. K. Van Bockstal*, Uniqueness for Inverse Source Problems of Determining a Space-Dependent Source in Time-Fractional Equations with Non-Smooth Solutions, Fractal and Fractional (2021-10, link)
  20. V. C. Le, M. Slodička and K. Van Bockstal, A time discrete scheme for an electromagnetic contact problem with moving conductor, Applied Mathematics and Computation (2021-09, link)
  21. V. C. Le, M. Slodička and K. Van Bockstal, Error estimates for the time discretization of an electromagnetic contact problem with moving non-magnetic conductor, Computers and Mathematics with Applications (2021-04, link)
  22. K. Van Bockstal*, Existence and uniqueness of a weak solution to a non-autonomous time-fractional diffusion equation (of distributed order), Applied Mathematics Letters (2020-11, link)
  23. K. Van Bockstal*, Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order), Mathematics (2020-08, link)
  24. M. Grimmonprez, L. Marin and Karel Van Bockstal*, The reconstruction of a solely time-dependent load in a simply supported non-homogeneous Euler–Bernoulli beam, Applied Mathematical Modelling (2020-03, link)
  25. K. Van Bockstal*, Identification of an unknown spatial load distribution in a vibrating beam or plate from the final state, Journal of Inverse and Ill-posed Problems (2019-10, link)
  26. M. Slodička, K. Siskova and K. Van Bockstal, Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation, Applied Mathematics Letters (2019-05, link)
  27. T. Kang, K. Van Bockstal* and R. Wang, The reconstruction of a time-dependent source from a surface measurement for full Maxwell's equations by means of the potential field method, Computers and Mathematics with Applications (2018-02, link)
  28. K. Van Bockstal*, M. Slodička and F. Gistelinck, Identification of a memory kernel in a nonlinear integrodifferential parabolic problem, Applied Numerical Mathematics (2017-10, link)
  29. K. Van Bockstal* and L. Marin, Recovery of a space-dependent vector source in anisotropic thermoelastic systems, Computer Methods in Applied Mechanics and Engineering (2017-07, link)
  30. M. Grimmonprez, K. Van Bockstal and M. Slodička, Error estimates for the time discretization of a semilinear integrodifferential parabolic problem with unknown memory kernel, Numerical Mathematics: Theory, Methods and Applications (2017-02, link)
  31. K. Van Bockstal* and M. Slodička, Recovery of a time-dependent heat source in one-dimensional thermoelasticity of type-III, Inverse Problems in Science and Engineering (2017, link)
  32. K. Van Bockstal*, R. H. De Staelen and M. Slodička, Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory, International Journal of Computational and Applied Mathematics (2015-12, link)
  33. R. H. De Staelen, K. Van Bockstal and M. Slodička, Error analysis in the reconstruction of a convolution kernel in a semilinear parabolic problem, International Journal of Computational and Applied Mathematics (2015-02, link)
  34. K. Van Bockstal*, M. Slodička, Error estimates for the full discretization of a nonlocal parabolic model for type-I superconductors, International Journal of Computational and Applied Mathematics (2015-02, link)
  35. K. Van Bockstal* and M. Slodička, A macroscopic model for an intermediate state between type-I and type-II superconductivity, Numerical Methods for Partial Differential Equations (2015-01, link)
  36. K. Van Bockstal* and M. Slodička, The well-posedness of a nonlocal hyperbolic model for type-I superconductors, Journal of Mathematical Analysis and Applications (2015-01, link)
  37. K. Van Bockstal*, M. Slodička, Recovery of a space-dependent vector source in thermoelastic systems, Inverse Problems in Science and Engineering (2015, link) (Selected as the Mathematics & Statistics Article of the Week by Taylor & Francis in December 2014)
  38. K. Van Bockstal*, M. Slodička, Determination of a time-dependent diffusivity in a nonlinear parabolic problem, Inverse Problems in Science and Engineering (2015, link)
  39. M. Slodička, K. Van Bockstal*, A nonlocal parabolic model for type-I superconductors, Numerical Methods for Partial Differential Equations (2014-05, link)
  40. K. Van Bockstal*, M. Slodička, Determination of an unknown diffusion coefficient in a semilinear parabolic problem, International Journal of Computational and Applied Mathematics (2013-07, link)