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Minimal small weight codewords

A codeword c is minimal if for any ¢ with supp(c’) C supp(c) there
exists an « € F, such that ¢’ = ac.
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Minimal small weight codewords
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Minimal small weight codewords
Suppose that 3a + 43 = 0.

ap

HE - {{a07 ar, a2;aa bOa b17 b27 b375}} = HCC)O
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Points & hyperplanes

Minimal small weight codewords
Suppose that 3a + 43 = 0.

New result
Let ¢ € Cq—+(d, q), wt(c) small. |H>®| = 1 = ¢ minimal.
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meets every (d — k)-dimensional space in at least d — k + 1 points.
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Preliminaries

Let k € {0,...,d}.

A strong k-blocking set of PG(d, q) is a point set that meets every
(d — k)-dimensional space & in a point set spanning k.

PG(2, q) PG(3, q) [10]

e

size 3q size4q + 4

A higgledy-piggledy set of k-spaces is a set K of k-spaces such that
the point set UK is a strong k-blocking set.
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Motivation

o
S
strong block. set w.rt. hyperplanes, S := {Py,..., Ps|}.
[ ]

[ J

PP P Ps|

X10 X0  X30 X|S|o

X1 Xa1 X3 X|s|1

X|S|d

X1d Xod  X3d

L coordinates of P;

Theorem (Alfarano, Borello and Neri [1];
Tang, Qiu, Liao and Zhou [18]).
— the generator matrix of a minimal linear [|S|, d + 1]4-code!
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[ ]
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A\ coordinates of P;

Theorem (Alfarano, Borello and Neri [1];
Tang, Qiu, Liao and Zhou [18]).
— the generator matrix of a minimal linear [|S|, d + 1]4-code!

Goal: Finding small strong blocking sets.
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Motivation

® °
S

strong block. set w.r.t. hyperplanes, S := {Py, ..., Ps|}.

PY o
[ ]

PP P Ps

X10 X0  X30 X|S|o

X1 X1 X3 X|S|1

X\sld

X1d Xod  X3d

A\ coordinates of P;

Theorem (Alfarano, Borello and Neri [1];
Tang, Qiu, Liao and Zhou [18]).
— the generator matrix of a minimal linear [|S|, d + 1]4-code!

Goal: Finding small streng-bleekingsets higgledy-piggledy sets.



2 ¢\ Strong blocking sets

Known results



2

Strong blocking sets

Theorem (Fancsali and Sziklai [14]).
Ifg>d+ L%’J, then
a higg.-pigg. line set contains at least d + ng lines.

Known results



2

Strong blocking sets

Known results

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]).

a higg.-pigg. line set contains at least d + |_‘51J — {%j lines.



2 Strong blocking sets

Known results

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]).

a higg.-pigg. line set contains at least d + ng — {%j lines.

Theorem (Fancsali and Sziklai [14]).
If g > 2d — 1, then
There exists a higg.-pigg. line set of size 2d — 1.
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Strong blocking sets

Known results
Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]).

a higg.-pigg. line set contains at least d + L%J — L%j lines.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]).

there exists a higg.-pigg. line set of asymptotic size 2d — 1.

PG4, q)
PG(3, q) [10] q > 36086, char(q) # 2,3 (7] PG(5, q) [6]

< | ==
N = ) \=

size 4q + 4 size 6q + 6 size 7q + 7
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Projection Dualisation Field reduction
e.g. consider one line k—d—k—1 only ifd+1is
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Coordinates Probability Elem. geometry
disjoint six lines in asymptotic bounds, intersecting six lines,
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Strong blocking sets

Theorem (Fancsali and Sziklai [13]).
A set KC of k-spaces, |K| < g, is a higg.-pigg. set
< no (d — k — 1)-space meets all its elements.

Construction methods

Elem. geometry
intersecting six lines,
see next slide.
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N

New result
There exist six lines in PG(4, q) in higgledy-piggledy arrangement,
two of which intersect.

size 6q + 5
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Six lines

N - >
New result
There exist six lines in PG(4, q) in higgledy-piggledy arrangement,
two of which intersect.

| LT N

A i o) . ) Dualisation
There exist six planes in (4, q) in k—d—k—1

higgledy-piggledy arrangement, two of which ~
intersect in a line. [~

/ P = s k) N X
€31
%5

New result

(e.g. lower bound).
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Seven planes

Theorem (Fancsali and Sziklai [13]).
A set KC of k-spaces, |K| < ¢, is a higg.-pigg. set
<> no (d — k — 1)-space meets all its elements.

Projection Dualisation Field reduction
e.g. consider one line k—d—k—1 only if d+ 1is
parity case. (e.g. lower bound). composite.
Coordinates Probability Elem. geometry
disjoint six lines in asymptotic bounds, intersecting six lines,
PG(4, q) [7]. see e.g. [15]. see next slide.
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Theorem (Fancsali and Sziklai [13]).
A set K of k-spaces is a higg.-pigg. set
<= no (d — k — 1)-space meets all its elements.

Seven planes

Field reduction
only if d + 1is
composite.
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A set K of k-spaces is a higg.-pigg. set
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Seven planes

Theorem (Fancsali and Sziklai [13]).
A set K of k-spaces is a higg.-pigg. set
<= no (d — k — 1)-space meets all its elements.

Definition (Linear set). Field reduction
A linear set is a point set P C PG(r — 1,¢") s.t. onlyifd+1is
(37‘(’ € PG(I‘t -1, q))(-’t‘r,t,q(P) N ;é 0= Pe 73) composite,

Theorem.

If P C PG(r — 1, q") is not contained in a (non-triv.) linear set, then
Frt,q(P) is a hig.-pig. set of (t — 1)-spaces in PG(rt — 1, q).
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Strong blocking sets

PG(1, ¢°)

7 points

PG(@3, q)

PG(5, ) Seven planes
LT /7
/7 Theoretical lower bound:
7 planes.
(T /7 P
yavs
7 planes

Bundle of conics determined by 3 points
Fy-lines — affine lines
clubs with head at infinity — affine planes

clubs without head at infinity — cones

vV Vv VvyVvyy

scattered [Fg-linear sets — hyperbolic quadrics



Strong blocking sets

PG(1, q°) PG(5, q) Seven planes
-~ /7 Theoretical lower bound:
/7 7 planes.
7 points 7 planes

New result
There exist seven planes in PG(5, q) in higgledy-piggledy
arrangement.
> clubs with head at infinity — affine planes
/ > clubs without head at infinity — cones

LT > scattered [F-linear sets — hyperbolic quadrics
PG, a) 9
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A p-saturating set S of PG(d, qg): point set such that
> any point of PG(d, g) lies in span of < o + 1 points of S.
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Let o € {0,1,...,d}.

Preliminaries

A p-saturating set S of PG(d, qg): point set such that

> any point of PG(d, g) lies in span of < o + 1 points of S.

N
q odd
size g + 1 size q + 2
q must be [10]
. a fourth power
1-saturating sets
of PG(Z, q) size
2,/q+2yq+2
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N\

/

q#3

Preliminaries

Saturating sets of PG(3, q)

> 1-saturating set of PG(3, q) [8].
> Size: 2g+ 1.

[3]
q must be
cube

> 2-saturating set of PG(3, q) [10].
> Size: 4/q + 4.
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Saturating sets

Preliminaries

Saturating sets of PG(3, q)

> 1-saturating set of PG(3, q) [8].

N\

»> Size: 2g + 1.
q#3 d
B3]
q must be
cube > 2-saturating set of PG(3, q) [10].
/ > Size: 4/q + 4.

sq(d, 0) := size of a smallest p-saturating set of PG(d, q).
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S

Motivation

o-saturating set of PG(d, q), S := {P1, P, P3,..., P, }-

Py

X10
X11

X1d

P,
X20
X21

Xod

P3
X30
X31

X3d

p;
Xio
Xi1
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X|S|o
X|S|1

X\sld
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S

Motivation

o-saturating set of PG(d, q), S := {P1, P, P3,..., P, }-

Py

X10
X11

X1d

P,
X20
X21

Xod

P3
X30
X31

X3d

Pis|
X|S|o
X|S|1

X\sld

L coordinates of P;
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Saturating sets

. Motivation
o-saturating set of PG(d, q), S := {P1, P, Ps, . .., P|$|}-
[ ]
P P P Pis|
X10 X0 X3 XS0
X11 X21  X3q XS
X1d Xod  X3d X|s|d

L coordinates of P;

PC-matrix of a [|S], |S| — d — 1]4 (0 + 1)-covering code!

Any vector of IF‘LS‘ lies within Hamming distance g + 1 of a codeword
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Saturating sets

[ ]
P P P
X10 X200 X30
X111 X1 X317

X1d Xad  X3d

Motivation

[ ]
S
o-saturating set of PG(d, q), S := {Py, Py, P3,..., Ps}-

Pi P
XS0
XS

X\sld

L coordinates of P;

PC-matrix of a [|S], |S| — d — 1]4 (0 + 1)-covering code!

Any vector of IF‘LS‘ lies within Hamming distance g + 1 of a codeword.

Goal: Finding good upper bounds for s¢(d, o).
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PG(2, q): LOTS of research!
» Strongly ~ to complete caps.
» Often computer searches.
» Nice survey in [9]. (Davydov &
Ostergard, 2000)

Somewhat new result
=5
sed,0) 2 e-qer.
Hypothesis Desperate wish
d—eo
se(d,0) S e-qer,
for all d, o < d and co-many gq.

Known results
PG(d, q): quite a lot of research
> Davydov et al., 2011 [10]

d+1 d—p
sq(da 0) S 0 q e

ifqisa(o+1)" power.

v

Bartoli et al., 2017, 2019 [4, 5]

sq(d, 1) < 297"\ /In(q)

if d is even and d, q are large.
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> Letn=2and p=1.
> Let g be square.

Theorem (Davydov, 1995 [8])
Let g be square. Then

5q(2,1) < 3,/G— 1.

The inspiration
Keep in mind

Sq(2, N 2 Vq

> 1-sat. set of PG(2, g).



3 Saturating sets

> Letn=2and p=1.
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Saturating sets

> Letn=2and p=1.
> Let g be square.

Theorem (Davydov, 1995 [8])
Let g be square. Then

5q(2,1) < 3,/G— 1.

The inspiration

Keep in mind
Sq(2, 1) Z \/ﬁ

> 1-sat. set of PG(2, g).
» Davydov: algebraic proof.
» Combinatorial proof?

» Geometric proof?

Theorem (Davydov et al., 2011 [10])
Let g be a fourth power. Then

=/ 5q(2,1) < 2/G+ 2/q + 2.
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If g is a (0 + 1)*" power: two possible paths to take

Path of the single subgeometry Path of the mixed subgeometries
Strong blocking set approach Mixed subgeometry approach

> Strong d — o-blocking sets

in PG(d, ¢y/q).
=i
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New result Theorem (Davydov et al., 2011 [10])
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The spark
Let g be cube (o = 2).
AG(3, /q)
0
AG(3, ¢/9)
“This last construction looks promising!” - LD, 2019

Let g be cube. Then Let g be cube. Then
5¢(3,2) < 6y/q— 3. 5¢(3,2) < 4Y/q+ 4.
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3 Saturating sets

A monstrous construction
Obstacles

PG(d,(q)*")

P> If Pin span of < (g + 1) petals?
[d—el P Split petals and add multiple
’layers’ in each petal!

P> The size will get expon. big...
Use the subgeometries
from the petal above!
You only need min{g, d — o}
layers, and not in all petals!
The number of subgeometries in
. lower layers can be reduced!

> Whatif P € 3?

> Duplicate construction!

(if necessary)
de ;:ndent T1(e+1)
sgubge(?metries T2(e+1)
[d — o]
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A monstrous construction

New result
Let 0 < ¢ < d and let g = (¢/)¢*" for any prime power ¢'. Then

k(d, 0) k(d,0)—1 g—1
(o +1)(o+2) N . . .
sq(d, @) < E (Tw’“ e ”) E E a(o, j)(g) ¥ e V=i
i=1 i=
£(d,0)—1

+ E ad, 0, )@ — «d, o) — ©(d, o) o
,0)—

j I L Z (Zd—9+2—i<9+1)) Llde)

i=1

P Kd, 0= | =2, 2
@0 [5F ] > id, 0 (ka0 —1) £,
ld,p):=(d (mod o+ 1)) +1,
with (@2 ( ( )) Q(Q+1)+l(dyg>(€(dyg)71) (ngl(d,gm)
o . eles)—jGn) > wdio)- 2 ’
a(e, j) = =,

. ’
> 5 - 1 ifqg' =2,
q'-2 0 ifq A2

£(d, ) (ZQ—E(d»Q)‘rzjﬂ) —JGj+1)
3 s

L C
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A monstrous construction

New result
Let 1 < o < d and let q = (¢')?*" for any prime power ¢'. Then

sq(d, 0) < W(«;’f"@ rolo+ ) (@) e e g 4 1)

Somewhat new result
d—o Davydov et al., 2011 [10]
sod,o) 2 o-qe.

d+1 d—o
Hypeothesis Desperate wish sq(d; 0) ( 0 >q o+
d—e
Sq(d7 Q) S; 0-q ol ’_fq isa (Q . 1)th power.

for all d, o < d and co-many gq.
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.
F I n ite geometry is awesome!
.

Thank you for your attention. Are there any

questions?
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