Characterising and constructing **codes**

using finite geometries

Overview

Points & hyperplanes

- Known results in the plane, q = p
- Known results for d > 2
- Known results in the plane, q > p
- Known results for n > 2, q > p
- Minimal small weight codewords

Strong blocking sets

- Motivation
- Known results
- Construction methods
- Six lines
- Seven planes
- 3

Saturating sets

- Motivation
- Known results
- The inspiration
- Two different approaches
- The spark
- A monstrous construction

The code $C_{d-1}(d, q)$

The code $C_{d-1}(d, q)$

The code $C_{d-1}(d, q)$

The code $C_{d-1}(d, q)$

...

Known results in the plane, q = p

Known results in the plane, q = p

wt(c) = p + 1

Known results in the plane, q = p

Known results in the plane, q = p

Known results in the plane, q = p

weight

Known results in the plane, q = p

Characterised up till wt(c) $\leq 4p - 22$ (Szőnyi and Weiner [17])

wt(c) = p + 1wt(c) = 2p(+1)p = 2wt(c) = 3p - 3p ≠ 2 wt(c) = 3p - 2wt(c) $\leq \max{3p + 1, 4p - 22}$

Known results in the plane, q = p

Known results in the plane, q = p

Known results in the plane, q = p

•• ••••• ••• ••• ••• •• ••

Smallest nonzero weight:

Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12].

Smallest nonzero weight: Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12]. Second smallest nonzero weight: Polverino and Zullo [16].

$$wt(c) = q^{d-1} + \cdots + q + 1$$

wt(c) =
$$2q^{d-}$$

Smallest nonzero weight: Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12]. Second smallest nonzero weight: Polverino and Zullo [16].

$$wt(c) = q^{d-1} + \cdots + q + 1$$

wt(c) =
$$2q^{d-1}$$

New result: characterisation up to

wt(c)
$$\leq \left(4 - \mathcal{O}\left(\frac{1}{q}\right)\right) \theta_{d-1}$$

weight

...

Known results in the plane, q > p

Known results in the plane, q > p

Characterised up till wt(c) $\lesssim q \sqrt{q}$ (Szőnyi and Weiner [17])

Known results in the plane, q > p

Characterised up till wt(c) $\lesssim q \sqrt{q}$ (Szőnyi and Weiner [17])

Known results in the plane, q > p

Characterised up till wt(c) $\lesssim q \sqrt{q}$ (Szőnyi and Weiner [17])

Known results for n > 2, q > p

Smallest nonzero weight:

Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12]. Second smallest nonzero weight: Polverino and Zullo [16].

$$wt(c) = q^{d-1} + \cdots + q + 1$$

wt(c) = $2q^{d-1}$

Known results for n > 2, q > p

Smallest nonzero weight:

Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12]. Second smallest nonzero weight: Polverino and Zullo [16].

$$wt(c) = q^{d-1} + \cdots + q + 1$$

New result: characterisation up to

wt(c)
$$\lesssim rac{1}{2^{d-2}} \sqrt{q} \, heta_{d-1}$$

Known results for n > 2, q > p

Smallest nonzero weight:

Assmus and Key, Delsarte, Goethals and MacWilliams [2, 12]. Second smallest nonzero weight: Polverino and Zullo [16].

$$wt(c) = q^{d-1} + \cdots + q + 1$$

wt(c) = $2q^{d-1}$

New result: characterisation up to

$$\operatorname{wt}(\mathbf{c}) \lesssim rac{1}{2^{d-2}} \sqrt{q} \, heta_{d-1} \qquad o \qquad \operatorname{wt}(\mathbf{c}) \lesssim \sqrt{q} \, heta_{d-1}$$

Minimal small weight codewords

A codeword c is *minimal* if for any c' with supp(c') \subseteq supp(c) there exists an $\alpha \in \mathbb{F}_p$ such that $c' = \alpha c$.

Minimal small weight codewords

Suppose that $3\alpha + 4\beta = 0$.

 $\mathbb{H}_{c}^{1} = \{\{a_{0}, a_{1}, a_{2}\}, \{\widetilde{a}\}, \{b_{0}, b_{1}, b_{2}, b_{3}\}, \{\widetilde{b}\}\}$

•••••

• ••

Minimal small weight codewords

Suppose that $3\alpha + 4\beta = 0$.

 $\mathbb{H}_{c}^{2} = \{\{a_{0}, a_{1}, a_{2}, \widetilde{a}\}, \{b_{0}, b_{1}, b_{2}, b_{3}, \widetilde{b}\}\}$

• ••

Minimal small weight codewords

...

Suppose that $3\alpha + 4\beta = 0$.

 $\mathbb{H}_c^3=\left\{\left\{a_0,a_1,a_2,\widetilde{a},b_0,b_1,b_2,b_3,\widetilde{b}\right\}\right\}=\mathbb{H}_c^\infty$

Minimal small weight codewords

Suppose that $3\alpha + 4\beta = 0$.

New result Let $c \in C_{d-1}(d, q)$, wt(c) small.

Minimal small weight codewords

Suppose that $3\alpha + 4\beta = 0$.

New result Let $c \in C_{d-1}(d, q)$, wt(c) small. $|\mathbb{H}_{c}^{\infty}| = 1 \Rightarrow c$ minimal.

Let $k \in \{0, ..., d\}$.

•• ••••• ••••• ••••• •• ••

Let $k \in \{0, ..., d\}$.

A *k*-blocking set of PG(d, q) is a point set that meets every (d - k)-dimensional space.

Let $k \in \{0, ..., d\}$.

An (d - k + 1)-fold k-blocking set of PG(d, q) is a point set that meets every (d - k)-dimensional space in at least d - k + 1 points.

Let $k \in \{0, ..., d\}$.

A *strong k-blocking set* of PG(d, q) is a point set that meets every (d - k)-dimensional space κ in a point set spanning κ .

Let $k \in \{0, ..., d\}$.

A *strong k-blocking set* of PG(d, q) is a point set that meets every (d - k)-dimensional space κ in a point set spanning κ .

Let $k \in \{0, ..., d\}$.

A *strong k-blocking set* of PG(d, q) is a point set that meets every (d - k)-dimensional space κ in a point set spanning κ .

A *higgledy-piggledy set of k-spaces* is a set \mathcal{K} of *k*-spaces such that the point set $\cup \mathcal{K}$ is a strong *k*-blocking set.

Let $k \in \{0, ..., d\}$.

A *strong k-blocking set* of PG(d, q) is a point set that meets every (d - k)-dimensional space κ in a point set spanning κ .

A *higgledy-piggledy set of k-spaces* is a set \mathcal{K} of *k*-spaces such that the point set $\cup \mathcal{K}$ is a strong *k*-blocking set.

...

Strong blocking sets

S

2

Strong block. set w.r.t. hyperplanes, $S := \{P_1, \dots, P_{|S|}\}.$

P_1	P_2	P_3		P_i		$P_{ S }$
(x_{10})	<i>x</i> ₂₀	<i>x</i> ₃₀	• • •	x_{i0}	•••	$x_{ S 0}$
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	• • •	<i>x</i> _{<i>i</i>1}	•••	$x_{ \mathcal{S} 1}$
	÷	÷	÷	:	÷	÷
$\setminus_{x_{1d}}$	<i>x</i> _{2<i>d</i>}	x _{3d}	• • •	x _{id}	• • •	$x_{ S d}$

Strong blocking sets

S

2

Strong block. set w.r.t. hyperplanes, $S := \{P_1, \dots, P_{|S|}\}.$

Theorem (Alfarano, Borello and Neri [1]; Tang, Qiu, Liao and Zhou [18]). \rightarrow the generator matrix of a minimal linear $[|S|, d + 1]_q$ -code!

Theorem (Alfarano, Borello and Neri [1]; Tang, Qiu, Liao and Zhou [18]). \rightarrow the generator matrix of a minimal linear $[|S|, d+1]_q$ -code!

Goal: Finding small strong blocking sets.

Theorem (Alfarano, Borello and Neri [1]; Tang, Qiu, Liao and Zhou [18]). \rightarrow the generator matrix of a minimal linear $[|S|, d + 1]_q$ -code!

Goal: Finding small strong blocking sets higgledy-piggledy sets.

Theorem (Fancsali and Sziklai [14]).

If $q \ge d + \lfloor \frac{d}{2} \rfloor$, then a higg.-pigg. line set contains at least $d + \lfloor \frac{d}{2} \rfloor$ lines.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge d + \lfloor \frac{d}{2} \rfloor$, then a higg.-pigg. line set contains at least $d + \lfloor \frac{d}{2} \rfloor - \lfloor \frac{d-1}{a} \rfloor$ lines.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge d + \lfloor \frac{d}{2} \rfloor$, then

a higg.-pigg. line set contains at least $d + \lfloor \frac{d}{2} \rfloor - \lfloor \frac{d-1}{q} \rfloor$ lines.

Theorem (Fancsali and Sziklai [14]).

If $q \ge 2d - 1$, then There exists a higg.-pigg. line set of size 2d - 1.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge d + \lfloor \frac{d}{2} \rfloor$, then a higg.-pigg. line set contains at least $d + \lfloor \frac{d}{2} \rfloor - \lfloor \frac{d-1}{a} \rfloor$ lines.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge 2d - 1$, then there exists a higg.-pigg. line set of asymptotic size 2d - 1.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge d + \lfloor \frac{d}{2} \rfloor$, then a higg.-pigg. line set contains at least $d + \lfloor \frac{d}{2} \rfloor - \lfloor \frac{d-1}{a} \rfloor$ lines.

Theorem (Fancsali and Sziklai [14]; Héger and Nagy [15]). If $q \ge 2d - 1$, then

there exists a higg.-pigg. line set of asymptotic size 2d - 1.

Construction methods

Theorem (Fancsali and Sziklai [13]).

A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftrightarrow no (d - k - 1)-space meets all its elements.

Construction methods

Theorem (Fancsali and Sziklai [13]). A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftrightarrow no (d - k - 1)-space meets all its elements.

Projection e.g. consider one line parity case. **Dualisation** $k \rightarrow d - k - 1$ (e.g. lower bound).

Coordinates disjoint six lines in PG(4, q) [7].

Probability asymptotic bounds, see e.g. [15]. **Field reduction** only if d + 1 is composite.

Elem. geometry intersecting six lines, see next slide.

Construction methods

Theorem (Fancsali and Sziklai [13]).

A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftrightarrow no (d - k - 1)-space meets all its elements.

Elem. geometry intersecting six lines, see next slide.

...

......

•

...

Six lines

New result

There exist six lines in PG(4, q) in higgledy-piggledy arrangement, two of which intersect.

Theorem (Fancsali and Sziklai [13]). A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftrightarrow no (d - k - 1)-space meets all its elements.

Projection e.g. consider one line parity case. **Dualisation** $k \rightarrow d - k - 1$ (e.g. lower bound). **Field reduction** only if d + 1 is composite.

Coordinates disjoint six lines in PG(4, q) [7]. **Probability** asymptotic bounds, see e.g. [15].

Elem. geometry intersecting six lines, see next slide.

Theorem (Fancsali and Sziklai [13]).

A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftarrow no (d - k - 1)-space meets all its elements.

Field reduction only if d + 1 is composite.

Theorem (Fancsali and Sziklai [13]).

A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftarrow no (d - k - 1)-space meets all its elements.

Definition (Linear set).

A *linear set* is a point set $\mathcal{P} \subseteq PG(r-1, q^t)$ s.t. $(\exists \pi \in PG(rt-1, q))(\mathcal{F}_{r,t,q}(P) \cap \pi \neq \emptyset \Leftrightarrow P \in \mathcal{P})$ **Field reduction** only if d + 1 is composite.

Theorem (Fancsali and Sziklai [13]).

A set \mathcal{K} of *k*-spaces, $|\mathcal{K}| \leq q$, is a higg.-pigg. set \Leftarrow no (d - k - 1)-space meets all its elements.

Definition (Linear set).

A *linear set* is a point set $\mathcal{P} \subseteq PG(r-1, q^t)$ s.t. $(\exists \pi \in PG(rt-1, q))(\mathcal{F}_{r,t,q}(P) \cap \pi \neq \emptyset \Leftrightarrow P \in \mathcal{P})$ **Field reduction** only if d + 1 is composite.

Theorem.

If $\mathcal{P} \subseteq PG(r-1, q^t)$ is not contained in a (non-triv.) linear set, then $\mathcal{F}_{r,t,q}(\mathcal{P})$ is a hig.-pig. set of (t-1)-spaces in PG(rt-1, q).

.....

•• •••••

.......

2

...

Strong blocking sets

 \square

........

.....

.....

Seven planes

Theoretical lower bound: 7 planes.

•

...

Strong blocking sets

Seven planes

Theoretical lower bound: 7 planes.

- Bundle of conics determined by 3 points
- \mathbb{F}_q -lines \rightarrow affine lines
- clubs with head at infinity \rightarrow affine planes
- clubs without head at infinity \rightarrow cones
- scattered \mathbb{F}_q -linear sets \rightarrow hyperbolic quadrics

Strong blocking sets

New result

PG(3, q)

There exist seven planes in PG(5, q) in higgledy-piggledy arrangement.

- clubs with head at infinity \rightarrow affine planes
- clubs without head at infinity \rightarrow cones
- scattered \mathbb{F}_q -linear sets \rightarrow hyperbolic quadrics

Let $\varrho \in \{0, 1, \ldots, d\}$.

A *\varrho*-saturating set *S* of PG(*d*, *q*): point set such that

▶ any point of PG(d, q) lies in span of $\leq \rho + 1$ points of S.

Let $\varrho \in \{0, 1, \ldots, d\}$.

A *\varrho*-saturating set S of PG(d, q): point set such that

• any point of PG(d, q) lies in span of $\leq \rho + 1$ points of S.

Saturating sets of PG(3, q)

- 1-saturating set of PG(3, q) [8].
- ► Size: 2*q* + 1.

2-saturating set of PG(3, q) [10].

Size:
$$4\sqrt[3]{q} + 4$$
.

Saturating sets of PG(3, q)

• 1-saturating set of PG(3, q) [8].

2-saturating set of PG(3, q) [10].

Size:
$$4\sqrt[3]{q} + 4$$
.

 $s_q(d, \varrho) :=$ size of a smallest ϱ -saturating set of PG(d, q).

S

3

...

Motivation

 ϱ -saturating set of PG(d, q), $S := \{P_1, P_2, P_3, \dots, P_{|S|}\}.$

P_1	P_2	P_3		Pi		$P_{ \mathcal{S} }$
(x_{10})	<i>x</i> ₂₀	<i>x</i> ₃₀	• • •	x_{i0}	•••	$x_{ S 0}$
<i>x</i> ₁₁	<i>x</i> ₂₁	<i>x</i> ₃₁	• • •	<i>x</i> _{<i>i</i>1}	• • •	$x_{ \mathcal{S} 1}$
:	÷	÷	÷	÷	:	÷
$\langle x_{1d} \rangle$	x_{2d}	<i>x</i> _{3d}	• • •	x _{id}	•••	$x_{ S d}$

000000 000000 0000000 0

S

3

Motivation

 ρ -saturating set of PG(d, q), $S := \{P_1, P_2, P_3, \dots, P_{|S|}\}$.

S

3

Motivation

 ϱ -saturating set of PG(d, q), $S := \{P_1, P_2, P_3, \dots, P_{|S|}\}.$

PC-matrix of a $[|S|, |S| - d - 1]_q (\varrho + 1)$ -covering code!

Any vector of $\mathbb{F}_q^{|\mathcal{S}|}$ lies within Hamming distance ρ + 1 of a codeword.

S

Motivation

 ϱ -saturating set of PG(d, q), $S := \{P_1, P_2, P_3, \dots, P_{|S|}\}.$

PC-matrix of a $[|S|, |S| - d - 1]_q (\varrho + 1)$ -covering code!

Any vector of $\mathbb{F}_q^{|S|}$ lies within Hamming distance ϱ + 1 of a codeword.

Goal: Finding good upper bounds for $s_q(d, \varrho)$.

3

Known results

...

Known results

PG(2, q): LOTS of research!

- Strongly \sim to complete caps.
- Often computer searches.
- Nice survey in [9]. (Davydov & Östergård, 2000)

Known results

PG(2, q): LOTS of research!

- Strongly \sim to complete caps.
- Often computer searches.
- Nice survey in [9]. (Davydov & Östergård, 2000)

PG(d, q): quite a lot of research

Davydov et al., 2011 [10]

$$s_q(d, arrho) \lesssim egin{pmatrix} d+1 \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q is a
$$(\varrho + 1)^{th}$$
 power.

Bartoli et al., 2017, 2019 [4, 5]

$$s_q(d,1) \lesssim 2q^{rac{d-1}{2}}\sqrt{\ln(q)}$$

Known results

PG(2, q): LOTS of research!

- Strongly \sim to complete caps.
- Often computer searches.
- Nice survey in [9]. (Davydov & Östergård, 2000)

Somewhat new result

$$s_q(d,\varrho) \gtrsim \boldsymbol{\varrho} \cdot \boldsymbol{q}^{\frac{d-\varrho}{\varrho+1}}.$$

PG(d, q): quite a lot of research

Davydov et al., 2011 [10]

$$s_q(d, arrho) \lesssim egin{pmatrix} d+1 \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q is a
$$(\varrho + 1)^{th}$$
 power.

Bartoli et al., 2017, 2019 [4, 5]

$$s_q(d,1) \lesssim 2q^{rac{d-1}{2}}\sqrt{\ln(q)}$$

Known results

PG(2, q): LOTS of research!

- Strongly \sim to complete caps.
- Often computer searches.
- Nice survey in [9]. (Davydov & Östergård, 2000)

Somewhat new result

$$s_q(d,\varrho) \gtrsim \varrho \cdot q^{\frac{d-\varrho}{\varrho+1}}.$$

Hypothesis Desperate wish $s_q(d, \varrho) \lesssim \varrho \cdot q^{\frac{d-\varrho}{\varrho+1}}$,for all $d, \varrho \leqslant d$ and ∞ -many q.

PG(d, q): quite a lot of research

Davydov et al., 2011 [10]

$$s_q(d, arrho) \lesssim egin{pmatrix} d+1 \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q is a
$$(\varrho + 1)^{th}$$
 power.

Bartoli et al., 2017, 2019 [4, 5]

$$s_q(d,1) \lesssim 2q^{rac{d-1}{2}}\sqrt{\ln(q)}$$

Known results

PG(2, q): LOTS of research!

- Strongly \sim to complete caps.
- Often computer searches.
- Nice survey in [9]. (Davydov & Östergård, 2000)

Somewhat new result

$$s_q(d,\varrho) \gtrsim arrho \cdot q^{rac{d-arrho}{arrho+1}}.$$

Hypothesis Desperate wish $s_q(d, \varrho) \leq \varrho \cdot q^{\frac{d-\varrho}{\varrho+1}}$,for all $d, \varrho \leq d$ and ∞ -many q.

PG(d, q): quite a lot of research

Davydov et al., 2011 [10]

$$s_q(d, arrho) \lesssim egin{pmatrix} d+1 \ arrho \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q is a
$$(\varrho + 1)^{th}$$
 power.

Bartoli et al., 2017, 2019 [4, 5]

$$s_q(d,1) \lesssim 2q^{rac{d-1}{2}}\sqrt{\ln(q)}$$

- Let n = 2 and $\varrho = 1$.
- Let *q* be square.

Keep in mind
$$s_q(2,1) ~\gtrsim~ \sqrt{m{q}}.$$

Theorem (Davydov, 1995 [8]) Let *q* be square. Then

$$s_q(2,1)\leqslant 3\sqrt{q}-1.$$

- Let n = 2 and $\varrho = 1$.
- Let *q* be square.

Keep in mind
$$s_q(2, 1) \gtrsim \sqrt{q}.$$

Theorem (Davydov, 1995 [8]) Let *q* be square. Then

$$s_q(2,1) \leqslant 3\sqrt{q}-1.$$

$$s_q(2,1) \leqslant 2\sqrt{q} + 2\sqrt[4]{q} + 2.$$

- Let n = 2 and $\varrho = 1$.
- Let q be square.

Keep in mind $s_q(2, 1) \gtrsim \sqrt{q}.$

- ▶ 1-sat. set of PG(2, *q*).
- Davydov: algebraic proof.

Theorem (Davydov, 1995 [8]) Let *q* be square. Then

$$s_q(2,1) \leqslant 3\sqrt{q}-1.$$

$$s_q(2,1) \leqslant 2\sqrt{q} + 2\sqrt[4]{q} + 2.$$

- Let n = 2 and $\varrho = 1$.
- Let q be square.

Keep in mind

$$s_q(2, 1) \gtrsim \sqrt{q}.$$

- ▶ 1-sat. set of PG(2, *q*).
- Davydov: algebraic proof.
- Combinatorial proof?

Theorem (Davydov, 1995 [8]) Let *q* be square. Then

$$s_q(2,1)\leqslant 3\sqrt{q}-1.$$

$$s_q(2,1) \leqslant 2\sqrt{q} + 2\sqrt[4]{q} + 2.$$

- Let n = 2 and $\varrho = 1$.
- Let q be square.

Keep in mind

$$s_q(2, 1) \gtrsim \sqrt{q}.$$

- ▶ 1-sat. set of PG(2, *q*).
- Davydov: algebraic proof.
- Combinatorial proof?
- Geometric proof?

Theorem (Davydov, 1995 [8]) Let *q* be square. Then

$$s_q(2,1) \leqslant 3\sqrt{q}-1.$$

$$s_q(2,1) \leqslant 2\sqrt{q} + 2\sqrt[4]{q} + 2.$$

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

Path of the single subgeometry *Strong blocking set approach*

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

Path of the single subgeometry **Strong blocking set approach**

Strong $d - \rho$ -blocking sets in PG $(d, \frac{\rho+1}{q})$.

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

Strong $d - \rho$ -blocking sets in PG $(d, \frac{\rho+1}{q})$.

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

Path of the single subgeometry **Strong blocking set approach**

PG(2, q), q 4th power PG(3, q)

Path of the mixed subgeometries *Mixed subgeometry approach*

If q is a $(\rho + 1)^{\text{th}}$ power: two possible paths to take

Path of the mixed subgeometries *Mixed subgeometry approach*

The spark

Let *q* be cube (ϱ = 2).

The spark

Let *q* be cube ($\rho = 2$).

...

The spark

...

Let *q* be cube ($\rho = 2$).

...

The spark

...

New result Let q be cube. Then $s_q(3,2) \leqslant 6\sqrt[3]{q} - 3.$

New result Let q be cube. Then $s_q(3,2) \leqslant 6\sqrt[3]{q} - 3.$

Theorem (Davydov et al., 2011 [10])

Let *q* be cube. Then $s_q(3, 2) \leqslant 4\sqrt[3]{q} + 4.$

"This last construction looks promising!" - LD, 2019

New result Let q be cube. Then $s_q(3,2) \leqslant 6\sqrt[3]{q} - 3.$

Theorem (Davydov et al., 2011 [10])

Let q be cube. Then $s_q(3,2) \leqslant 4\sqrt[3]{q} + 4.$

...

A monstrous construction

...

 $\tau_{1(\varrho+1)}$

 $[d - \varrho]$

Saturating sets

3

New result Let $0 < \rho < d$ and let $q = (q')^{\rho+1}$ for any prime power q'. Then

$$\begin{split} s_{q}(d,\varrho) &\leqslant \sum_{i=1}^{k(d,\varrho)} \left(\frac{(\varrho+1)(\varrho+2)}{2} (q')^{d+1-i(\varrho+1)} \right) + \sum_{i=1}^{k(d,\varrho)-1} \sum_{j=1}^{\varrho-1} \tilde{a}(\varrho,j)(q')^{d+1-i(\varrho+1)-j} \\ &+ \sum_{j=1}^{\ell(d,\varrho)-1} \tilde{a}(d,\varrho,j)(q')^{\ell(d,\varrho)-j} - \tilde{c}(d,\varrho) - \tilde{c}(d,\varrho) \\ &+ \delta_{q'-2} \cdot \left((2^{\varrho-1}-1) \cdot \sum_{i=1}^{k(d,\varrho)-1} \left(2^{d-\varrho+2-i(\varrho+1)} \right) + 2^{\ell(d,\varrho)} - 2 \right), \\ & \blacktriangleright \quad k(d,\varrho) \coloneqq \left[\frac{d-\varrho}{\varrho+1} \right], \\ & \triangleright \quad \ell(d,\varrho) \coloneqq \left(d \pmod{\varrho+1} \right) + 1, \\ & \triangleright \quad \tilde{a}(\varrho,j) \coloneqq \frac{\varrho(\varrho+2j+1)-j(3j+1)}{2}, \\ & \blacktriangleright \quad \tilde{a}(d,\varrho,j) \coloneqq \frac{\varrho(\varrho+2j+1)-j(3j+1)}{2}, \\ & \blacktriangleright \quad \tilde{a}(d,\varrho,j) \coloneqq \frac{\ell(d,\varrho)\left(2\varrho-\ell(d,\varrho)+2j+1\right)-j(3j+1)}{2}, \end{split}$$

New result Let $1 < \varrho < d$ and let $q = (q')^{\varrho+1}$ for any prime power q'. Then $s_q(d, \varrho) \leq \frac{(\varrho+1)(\varrho+2)}{2}(q')^{d-\varrho} + \varrho(\varrho+1)\left((q')^{d-\varrho-1} + \dots + q'+1\right).$

New result
Let
$$1 < \varrho < d$$
 and let $q = (q')^{\varrho+1}$ for any prime power q' . Then
 $s_q(d, \varrho) \leq \frac{(\varrho+1)(\varrho+2)}{2}(q')^{d-\varrho} + \varrho(\varrho+1)((q')^{d-\varrho-1} + \dots + q'+1).$

Somewhat new result

$$s_q(d,\varrho) \gtrsim \varrho \cdot q^{\frac{d-\varrho}{\varrho+1}}.$$

Hypothesis Desperate wish

$$s_q(d,\varrho) \lesssim \varrho \cdot q^{\frac{d-\varrho}{\varrho+1}},$$

for all $d, \varrho \leq d$ and ∞ -many q.

New result Let $1 < \varrho < d$ and let $q = (q')^{\varrho+1}$ for any prime power q'. Then $s_q(d, \varrho) \leq \frac{(\varrho+1)(\varrho+2)}{2}(q')^{d-\varrho} + \varrho(\varrho+1)((q')^{d-\varrho-1} + \dots + q'+1).$

Hypothesis Desperate wish

Somewhat new result

$$s_q(d,\varrho) \lesssim arrho \cdot q^{rac{d-arrho}{arrho+1}},$$

 $s_q(d,\varrho) \geq \rho \cdot q^{\frac{d-\varrho}{\varrho+1}}.$

for all $d, \varrho \leq d$ and ∞ -many q.

Davydov et al., 2011 [10]

$$s_q(d, \varrho) \lesssim egin{pmatrix} d+1 \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q *is* $a(\varrho + 1)^{th}$ *power.*

New result
Let
$$1 < \varrho < d$$
 and let $q = (q')^{\varrho+1}$ for any prime power q' . Then
 $s_q(d, \varrho) \leq \frac{(\varrho+1)(\varrho+2)}{2}(q')^{d-\varrho} + \varrho(\varrho+1)((q')^{d-\varrho-1} + \dots + q'+1).$

Somewhat new result $s_q(d, \varrho) \gtrsim \boldsymbol{\varrho} \cdot \boldsymbol{q}^{\frac{d-\varrho}{\varrho+1}}.$

Davydov et al., 2011 [10]

$$s_q(d,\varrho) \lesssim arrho \cdot q^{rac{d-arrho}{arrho+1}},$$

for all $d, \varrho \leq d$ and ∞ -many q.

$$s_q(d, \varrho) \lesssim egin{pmatrix} d+1 \ arrho \end{pmatrix} q^{rac{d-arrho}{arrho+1}}$$

if q *is* $a(\varrho + 1)^{th}$ *power.*

Fin.

Thank you for your attention. Are there any **questions**?

•• •••

......

...

Thank you for your attention. Are there any **questions**?

•• ••

Bibliography I

- G. N. Alfarano, M. Borello and A. Neri. 'A geometric characterization of minimal codes and their asymptotic performance'. In: Adv. in Math. of Commun. 16.1 (2022), pp. 115–133.
- [2] E. F. Assmus Jr. and J. D. Key. Designs and their codes. Vol. 103. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1992, pp. x+352.
- [3] B. Bagchi. 'On characterizing designs by their codes'. In: Buildings, finite geometries and groups. Vol. 10. Springer Proc. Math. Springer, New York, 2012, pp. 1–14.
- [4] D. Bartoli et al. 'New bounds for linear codes of covering radii 2 and 3'. In: Cryptogr. Commun. 11.5 (2019), pp. 903–920.
- [5] D. Bartoli et al. 'New bounds for linear codes of covering radius 2'. In: Coding theory and applications. Vol. 10495. Lecture Notes in Comput. Sci. Springer, Cham, 2017, pp. 1–10.
- [6] D. Bartoli et al. 'On cutting blocking sets and their codes'. In: Forum Math. 34.2 (2022), pp. 347-368.
- [7] D. Bartoli et al. 'Resolving sets for higher dimensional projective spaces'. In: Finite Fields Appl. 67 (2020), pp. 101723, 14.
- [8] A. A. Davydov. 'Constructions and families of covering codes and saturated sets of points in projective geometry'. In: IEEE Trans. Inform. Theory 41.6, part 2 (1995), pp. 2071–2080.
- [9] A. A. Davydov and P. R. J. Östergård. 'On saturating sets in small projective geometries'. In: European J. Combin. 21.5 (2000), pp. 563–570.
- [10] A. A. Davydov et al. 'Linear nonbinary covering codes and saturating sets in projective spaces'. In: Adv. Math. Commun. 5.1 (2011), pp. 119–147.

- [11] M. De Boeck. 'Intersection problems in finite geometries'. PhD thesis. Ghent University, 2014.
- [12] P. Delsarte, J. M. Goethals and F. J. MacWilliams. 'On generalized Reed-Muller codes and their relatives'. In: Information and Control 16 (1970), pp. 403–442.
- [13] Sz. L. Fancsali and P. Sziklai. 'Higgledy-piggledy subspaces and uniform subspace designs'. In: Des. Codes Cryptogr. 79.3 (2016), pp. 625-645.
- [14] Sz. L. Fancsali and P. Sziklai. 'Lines in higgledy-piggledy arrangement'. In: Electron. J. Combin. 21.2 (2014), Paper 2.56, 15.
- [15] T. Héger and Z. L. Nagy. 'Short minimal codes and covering codes via strong blocking sets in projective spaces'. In: IEEE Trans. Inform. Theory 68.2 (2022), pp. 881–890.
- [16] O. Polverino and F. Zullo. 'Codes arising from incidence matrices of points and hyperplanes in PG(n, q)'. In: J. Combin. Theory Ser. A 158 (2018), pp. 1–11.
- [17] T. Szőnyi and Zs. Weiner. 'Stability of k mod p multisets and small weight codewords of the code generated by the lines of PG(2, q)'. In: J. Combin. Theory Ser. A 157 (2018), pp. 321–333.
- [18] C. Tang et al. 'Full characterization of minimal linear codes as cutting blocking sets'. In: IEEE Trans. Inform. Theory 67.6, part 2 (2021), pp. 3690–3700.

