Colloquium Coding Theory and Cryptography

Small weight code words

in the code of points and hyperplanes in PG(n, q)

Lins Denaux

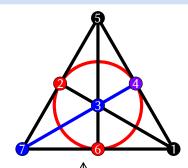
Joint work with S. Adriaensen, L. Storme and Zs. Weiner

The code $C_{n-1}(n,q)$

Vector space over \mathbb{F}_p spanned by the rows of the incidence matrix of hyperplanes and points in PG(n, q). Vectors = 'code words'.

Points

| Points | Po

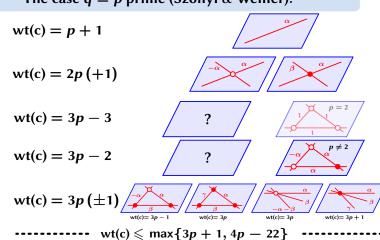


weight

Known results in the plane: $C_1(2, q)$

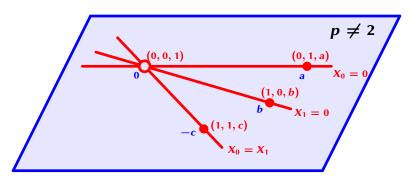
Small weight code words \approx **few** hyperplanes (= lines)?

The case q = p prime (Szőnyi & Weiner):



Known results in the plane: $C_1(2, q)$

An 'odd' code word for q = p prime (Bagchi; De Boeck & Vandendriessche):



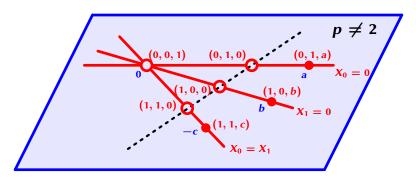
Proposition:
$$C_1(2,p)^{\perp} \leqslant C_1(2,p)$$

Proof.
$$\blacktriangleright \dim(C_1(2, p^h)) = \binom{p+1}{2}^h + 1.$$

$$(C_1(2,q)\cap C_1(2,q)^{\perp})\oplus \mathbf{1}=C_1(2,q).$$

4

An 'odd' code word for q = p prime (Bagchi; De Boeck & Vandendriessche):

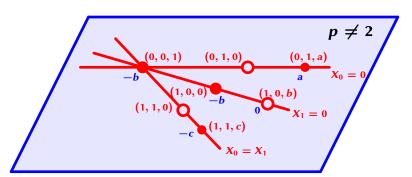


Proposition

▶ wt(c) = 3p - 3, every (2/3)-secant $\rightarrow \alpha + \beta (+ \gamma) = 0$.

Known results in the plane: $C_1(2, q)$

An 'odd' code word for q = p prime (Bagchi; De Boeck & Vandendriessche):



Proposition

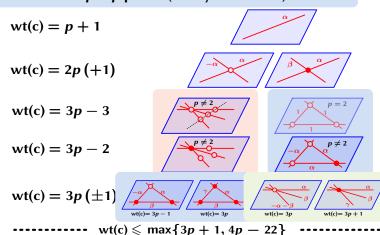
- ▶ wt(c) = 3p 3, every (2/3)-secant $\rightarrow \alpha + \beta (+\gamma) = 0$.
- ▶ wt(c) = 3p 2, every (2/3)-secant $\rightarrow \alpha + \beta (+ \gamma) \neq 0$.

weight

Known results in the plane: $C_1(2, q)$

Small weight code words \approx **few** hyperplanes (= lines)?

The case q = p prime (Szőnyi & Weiner):



weight

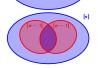
Known results in general: $C_{n-1}(n,q)$

Smallest weight code words of $C_{n-1}(n, q)$: **generally known**. Second smallest weight:

recently characterized (Polverino & Zullo).

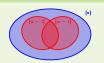
$$wt(c) = q^{n-1} + \cdots + q + 1$$

 $wt(c) = 2q^{n-1}$



First result: classification of the third smallest weight

$$wt(c) = 2q^{n-1} + \cdots + q + 1$$



First result: classification of the third smallest weight

$$wt(c) = 2q^{n-1} + \cdots + q + 1$$

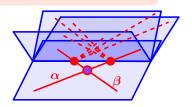
Proposition

For every k-space $\kappa \subseteq PG(n, q)$ and code word $c \in C_{n-1}(n, q)$:

$$c_{|\kappa} \in C_{k-1}(k,q)$$
.

The case $C_2(3, q)$, wt(c) small:

- ► Find a 2-secant.
- Find lots of characterized planes.
- Force the red lines to be coplanar.

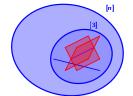


First result: classification of the third smallest weight

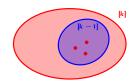
$$wt(c) = 2q^{n-1} + \cdots + q + 1$$

The case $C_{n-1}(n, q)$, wt(c) small:

► Each line intersects in 0, 1, 2, *q* or *q* + 1 points.



- Non-characterized spaces: contains affine part.
 - lots of points!
- Force all red points into two hyperplanes.



First result: classification of the third smallest weight

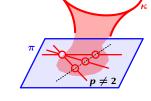
$$wt(c) = 2q^{n-1} + \cdots + q + 1$$

for all c with
$$2q^{n-1} < wt(c) \le \frac{5}{2}q^{n-1} - \frac{7}{5}q^{n-2}$$
.

And further ...?

- 'Weird' code word c in plane π (for q = p **prime**).
- ▶ Chose a disjoint (n-3)-space κ .

If $c = \sum_i \alpha_i l_i$, then $c' := \sum_i \alpha_i \langle l_i, \kappa \rangle$ is a linear combination of hyperplanes; $wt(c') = 3p^{n-1} - 3p^{n-2}$.



A quiet moment to think things through

Small weight code words \approx **few** hyperplanes (= lines)?

The case q = p prime (Szőnyi & Weiner):

Conjecture (q = p prime, $p \ge 7$)

Code words up to weight $3p^{n-1} + p^{n-2} + \cdots + p + 1$

 \sim linear combinations of at most three hyperplanes or a generalization of the 'weird' code word right.

We can likely do better.

The Budapest effect

Before Budapest

Proof in $C_2(3, q)$.

(0, 1, 2 \parallel q, q+1)-secants.

Bound: wt(c) $\leq \frac{5}{2}q^{n-1} - \frac{7}{5}q^{n-2}$

After Budapest

$$(\geqslant \lfloor \sqrt{10q} \rfloor)$$
-secants.

(0, 1, 2 \parallel q, q+1)-secants.

Proof in $C_{n-1}(n,q)$.

Bound: wt(*c*) < $3q^{n-1} - 3\theta_{n-2}$

Using all information, we can proof all lines are

$$(0, 1, 2, 3 || q - 1, q, q + 1)$$
-secants,

for all code words $c \in C_{n-1}(n, q)$,

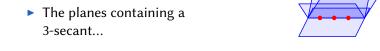
$$\operatorname{wt}(c) \lesssim 4q^{n-1} - \sqrt{10}q^{n-2}\sqrt{q}$$
.

The smallest weight code words of $C_2(3, p)$

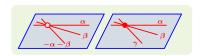
To simplify things, we consider a code word $c \in C_2(3, p)$, with

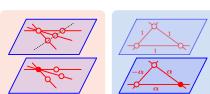
$$2p^2 + p + 1 < wt(c) \le 4p^2 - \sqrt{10}p\sqrt{p} - \frac{31}{2}p - 21$$

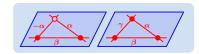
► There exists a 3-secant.



- * ... are all characterized.
- * ... are all of the same green type, or...
- * ... can be divided into two types: a green type and another type.

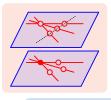


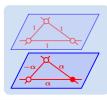


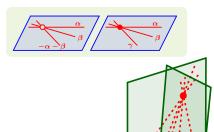


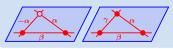
The smallest weight code words of $C_2(3, p)$

- * ... are all characterized.
- \star ... are all of the *same* green type, or...
- * ... can be divided into two types: a green type and another type.









Our result: all small code words are cones

If:

- ► Prime power q > 17, $q \notin \{25, 27, 31, 32, 49, 121\}$.
- ► Code word $c \in C_{n-1}(n, q)$,

$$\begin{split} &\mathsf{wt}(c)\leqslant \Big(4q-\sqrt{10q}-\frac{39}{2}\Big)\theta_{n-2}+\sqrt{10q}-\frac{3}{2}\\ &\mathsf{wt}(c)\leqslant 4\Big(q-\sqrt{q}-4\Big)\theta_{n-2}\text{ [simplified]} \end{split}$$

Then supp(c) correspond to a cone with a (n-3)-dimensional vertex and a characterized plane as base.

Szőnyi & Weiner: the plane $(q = p^h, h \ge 2, q > 27)$

Code words of weight lower than $\frac{(p-1)(p-4)(p^2+1)}{2p-1}$, when h=2,

$$(\lfloor \sqrt{q} \rfloor + 1)(q + 1 - \lfloor \sqrt{q} \rfloor)$$
, when $h > 2$,

correspond to linear combinations of exactly $\left\lceil \frac{\operatorname{wt}(c)}{a+1} \right\rceil$ lines.

Our result: further classification $(q = p^h, h \ge 2, q > 27)$

Code words up to weight $\left(\left\lfloor \frac{1}{2^{n-1}} \sqrt{q} \right\rfloor - \frac{9}{4}\right) \theta_{n-1}$, when h = 2, $\left(\left\lfloor \frac{1}{2^{n-2}} \sqrt{q} \right\rfloor - 1\right) \theta_{n-1}$, when h > 2,

correspond to linear combinations of exactly $\left\lceil \frac{\operatorname{wt}(c)}{\theta_{n-1}} \right\rceil$ hyperplanes.

Fin ite geometry is awesome!

Thank you for your attention. Are there any questions?