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Preliminaries1

The code Cn−1(n, q)
Vector space over Fp spanned by the rows of the incidence matrix
of hyperplanes and points in PG(n, q). Vectors = ‘code words’.
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Known results in the plane: C1(2,q)2

Small weight code words ≈ few hyperplanes (= lines)?

The case q = p prime (Szőnyi & Weiner):
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wt(c)6 max{3p + 1, 4p− 22}
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w
ei
gh

t

wt(c) = p + 1
α

wt(c) = 2p (+1)
α−α α

β

wt(c) = 3p− 3

wt(c) = 3p− 2

?

?

p = 2
1 1

1

p 6= 2
−α α

α

wt(c) = 3p (±1) −α α

β

wt(c)= 3p− 1

γ α

β

wt(c)= 3p

α

β
−α− β

wt(c)= 3p

α

β
γ

wt(c)= 3p + 1

wt(c)6 max{3p + 1, 4p− 22}



Known results in the plane: C1(2,q)2
Small weight code words ≈ few hyperplanes (= lines)?

The case q = p prime (Szőnyi & Weiner):
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Known results in the plane: C1(2,q)2
An ‘odd’ code word for q = p prime (Bagchi; De Boeck & Vandendriessche):
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Proposition: C1(2, p)⊥ 6 C1(2, p)

Proof. I dim(C1(2, ph)) =
(p+1

2

)h
+ 1.

I
(
C1(2, q) ∩ C1(2, q)⊥

)
⊕ 1 = C1(2, q).

Proposition
I wt(c) = 3p− 3, every (2/3)-secant→ α+ β (+ γ) = 0.

I wt(c) = 3p− 2, every (2/3)-secant→ α+ β (+ γ) 6= 0.
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Known results in general: Cn−1(n,q)3

Smallest weight code words of Cn−1(n, q): generally known.

Second smallest weight:
recently characterized (Polverino & Zullo).
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for all c with 2qn−1 < wt(c) 6 5
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And further…?

I ‘Weird’ code word c in plane π (for q = p prime).
I Chose a disjoint (n− 3)-space κ.

If c =
∑

i αili , then c′ :=
∑

i αi〈li, κ〉 is a
linear combination of hyperplanes;
wt(c′) = 3pn−1 − 3pn−2. p 6= 2

π
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Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
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(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).
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Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),
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√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The Budapest e�ect6

Before Budapest

Proof in C2(3, q).

[3]

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) 6 5
2q

n−1 − 7
5q

n−2

A�er Budapest

(> b
√
10qc)-secants.

(0, 1, 2 ‖ q, q + 1)-secants.

Proof in Cn−1(n, q).

[n]

[n− 1] [n− 1]

Bound: wt(c) < 3qn−1 − 3θn−2

Using all information, we can proof all lines are

(0, 1, 2, 3 ‖q− 1, q, q + 1)-secants,

for all code words c ∈ Cn−1(n, q),

wt(c) . 4qn−1 −
√
10qn−2√q.



The smallest weight code words of C2(3,p)7
To simplify things, we consider a code word c ∈ C2(3, p), with

2p2 + p + 1 <wt(c) 6 4p2 −
√
10p√p− 31

2 p− 21

I There exists a 3-secant.

I The planes containing a
3-secant…

? … are all characterized.

? … are all of the same green type, or…
? … can be divided into two types:

a green type and another type.

1 1

1

−α α

α

α

β
−α− β

α

β
γ

−α α

β

γ α

β
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Results & further research8

Our result: all small code words are cones

If:
I Prime power q > 17, q /∈ {25, 27, 31, 32, 49, 121}.
I Code word c ∈ Cn−1(n, q),

wt(c) 6
(
4q−

√
10q−

39
2

)
θn−2 +

√
10q−

3
2

wt(c) 6 4
(
q−√q− 4

)
θn−2 [simplified]

Then supp(c) correspond to a cone with a
(n− 3)-dimensional vertex and a characterized
plane as base.

q prime

π

[n− 3]

κ
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Results & further research8

Szőnyi & Weiner: the plane (q = ph, h > 2, q > 27)

Code words of weight lower than (p−1)(p−4)(p2+1)
2p−1 , when h = 2,

(b√qc+ 1)(q + 1− b√qc), when h > 2,

correspond to linear combinations of exactly
⌈wt(c)

q+1

⌉
lines.

Our result: further classification (q = ph, h > 2, q > 27)

Code words up to weight
(⌊ 1

2n−1
√
q
⌋
− 9

4

)
θn−1, when h = 2,(⌊ 1

2n−2
√
q
⌋
− 1
)
θn−1, when h > 2,

correspond to linear combinations of exactly
⌈wt(c)
θn−1

⌉
hyperplanes.
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Fin.

Thank you for your a�ention. Are there any

questions?
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