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Abstract

In classical projective geometry, a double six of lines consists of 12 lines `1,
`2, . . ., `6, m1, m2, . . ., m6 such that the `i are pairwise skew, the mi are pairwise
skew, and `i meets m j if and only if i 6= j. In the 1960’s Hirschfeld studied this
configuration in finite projective spaces PG(3,q) showing they exist for almost all
values of q, with a couple of exceptions when q is too small. We will be consid-
ering double-k sets in the symplectic geometry W(q), which is constructed from
PG(3,q) using an alternating bilinear form. This geometry is an example of a gen-
eralized quadrangle, which means it has the nice property that if we take any line
` and any point P not on `, then there is exactly one line through P meeting `.
We will discuss all of this in detail, including all of the basic definitions needed to
understand the problem, and give a result classifying which values of k and q allow
us to construct a double k-set of lines in W(q).

1 Background and Review
In classical projective geometry a double six of lines consists of a set of 12 lines `1, `2,
. . ., `6; m1, m2, . . ., m6, such that the `i are pairwise skew, the mi are pairwise skew, and
`i meets m j if and only if i 6= j. In the 1960’s J.W.P. Hirschfeld studied the existence of
double sixes in finite projective spaces (see the articles [1], [2], [3], [4]). He concluded
that a double six exists over all fields except for the finite fields of order 2, 3, and 5.

In the present work we shift the basic setting from projective space to the symplectic
geometry W(q) living in PG(3,q). W(q) denotes the point-line incidence geometry
derived from a symplectic polarity of PG(3,q), the 3-dimensional projective space over
the finite field Fq with q = pe elements, p a prime. It is well known that this incidence
geometry is a generalized quadrangle (GQ) of order q with all points regular for each
prime power q, with all lines regular when p = 2, and all lines antiregular when p
is odd. Conversely, if S is a GQ with all points regular, then it must be isomorphic
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to some W(q). For these results and general background information on GQ see [6].
What is important for the present study is that all lines are regular if and only if each
triad of lines (an unordered set of three distinct pairwise disjoint lines) has either q+1
transversals or exactly 1 transversal, and all lines are antiregular if and only if each
triad of lines has either 0 or exactly 2 transversals.

In 1987 the first author of the present study exhibited a double five in W(3) along
with several combinatorial facts concerning it (see [5]). Here we show that W(3) has no
double six, many double twos and double threes, and then we study the more interesting
double fours and double fives.

2 Double k-sets with k = 2, 3, or 6
Let S = W(q) for some prime power q, so that either all lines are regular or all lines
are antiregular. Then either all triads of lines have 1 or 1+q transversals, or all triads
of lines have 0 or 2 transversals. Note that S has too many double twos to mention.

Note: If S contains a double k, say Dk = (`1, . . . , `k; m1, . . . , mk), then D ′k−1 =
(`1, . . . , `k−1; m1, . . . , mk−1) is a double k− 1. Eventually we are going to prove that
W(q) has a double five if and only if q ≡ 1 or 3 mod 6. So certainly in these cases
W(q) has double threes, double fours and double fives.

Lemma 2.1. S never contains a double six.

Proof. Suppose that S contains a double six `1, `2, . . . , `6; m1,m2, . . . ,m6. It follows
that (`1, `2, `3) is a triad with three centers m4,m5,m6. This forces us to be in the
situation where all lines are regular (so q is even), i.e. any line meeting two of `1, `2, `3
must meet the third one. Hence the lines m1,m2,m3 of the putative double six cannot
exist.

Let T = (`1, `2, `3) be a triad of lines. We start by considering the existence of
double threes.

Case 1: T has no transversal. Hence q is odd and all lines are antiregular. Let P1,3
denote an arbitrary point of `1, and let m3 be the line through P1,3 meeting `2 at a point
P2,3. Clearly m3 cannot meet `3 since T has no transversal. Next let P3,2 denote the
point on `3 collinear with P2,3, and let m2 be the line through P3,2 meeting `1, say in the
point P1,2. Then let P2,1 be any point of `2 different from P2,3. So P2,1 will be collinear
with a point P3,1 of `3 different from P3,2, and the line m1 through P3,1 and P2,1 will not
meet `1. Hence (`1, `2, `3; m1,m2,m3) is a double three.

Case 2: T has exactly two transversals, so again s is odd and all lines are antireg-
ular. If we now let m4 and m5 be the two transversals of T , using just the q−1 points
on each of the lines `1, `2 and `3 (and not on m4 or m5), we can repeat the construction
given in Case 1 to produce a double three.

Case 3: T has a unique transversal. So all lines are regular. In this case q = 2e.
So let T = (`1, `2, `3) be a triad with a unique transversal m4. Say m4 meets `i at Pi,4,
i = 1,2,3. Let P1,3 be a point of `1 different from P1,4; P2,3 the point of `2 collinear
with P1,3; and m3 the line through P1,3 and P2,3. Clearly m3 does not meet `3. Let P3,2
be the point of `3 collinear with P2,3; P1,2 the point of `1 collinear with P3,2; m2 the line
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through P1,2 and P3,2. Clearly m2 cannot meet `2. Let P2,1 be the point of `2 collinear
with P1,2; P3,1 the point of `3 collinear with P2,1; m1 the line through P2,1 and P3,1.
Clearly m1 does not meet `1. So D3 = (`1, `2, `3; m1,m2,m3) is a double three. We ob-
tained this double three in a particular way. However, now suppose that D3 = (`1, `2, `3;
m1,m2,m3) is any double three and that all lines are regular. Then T = (`1, `2, `3) and
T ′ = (m1,m2,m3) must have unique transversals m4 and `4, respectively. Suppose that
`4 were to meet m4. Then (m1,m2,m4) would have two transversals, viz., `3 and `4,
which is impossible since all triads must have either 1 or q+ 1 transversals. Hence
D4 = (`1, `2, `3, `4; m1,m2,m3,m4) is a double four.

We collect these observations into a lemma.

Lemma 2.2. Let S = W(q) for some prime power q. If T = (`1, `2, `3) is any triad
that does not have 1+ q transversals, then T is contained in a double three. If q is
even, then each double three is contained in a unique double four. In particular, W(q)
contains double fours when q = 2e.

In the course of determining just when W(q) contains double fives we show that
for all prime powers q it is true that W(q) contains double fours.

3 Double Fives
Our first result here implies that if W(q) has a double five, then q must be odd.

Lemma 3.1. Let S = W(q) for some prime power q. Suppose that D5 = (`1, . . . , `5;
m1, . . . , m5) is a double five. Since T = (`1, `2, `3) cannot have 1+q transversals but
does have two (viz., m4 and m5), it must be the case that all lines are antiregular, which
implies that q is odd (see [6]).

Theorem 3.2. The symplectic geometry W(q) has a double five if and only if q ≡
1 or 3 mod 6.

Proof. Our proof requires the extensive use of coordinates. As each two symplectic
forms are equivalent up to a change of basis, we will represent ours without losing
generality by

x̄◦ ȳ = x0y1− x1y0 + x2y3− x3y4.

A line ` is called isotropic provided x̄ ◦ ȳ = 0 for all x̄ and ȳ on `, and the points of
PG(3,q) along with the set of all isotropic lines form the symplectic geometry W(q).
The idea is to coordinatize the lines of a putative double five as generally as possi-
ble and determine those restrictions on q which are necessary and sufficient for the
existence of a double five of isotropic lines.

The configuration of lines we wish to consider is this: five pairwise skew isotropic
lines, denoted `1, `2, . . ., `5, with each four of the `i having exactly one transversal mk
not meeting `k. We will refer to the point `i∩m j, where i 6= j, as Pi, j.

We will use some important properties of the symplectic group to put convenient
coordinates on as many points as possible, without losing any generality. Firstly, the
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projective symplectic group PSp(4,q) is transitive on all of the points of W(q); the
stabilizer PSp(4,q){P} of a fixed point P is transitive on points not collinear with P; and
the stabilizer PSp(4,q){P},{Q} of two noncollinear points P and Q is triply transitive on
the points collinear with both P and Q. These results allow us to label

P1,5 = `1∩m5 = (1 : 0 : 0 : 0).
P2,4 = `2∩m4 = (0 : 1 : 0 : 0),
P1,4 = `1∩m4 = (0 : 0 : 0 : 1), and
P2,5 = `2∩m5 = (0 : 0 : 1 : 0).

We have now coordinatized the following lines:

`1 = 〈(1 : 0 : 0 : 0), (0 : 0 : 0 : 1)〉,
`2 = 〈(0 : 1 : 0 : 0), (0 : 0 : 1 : 0)〉,

m4 = 〈(0 : 1 : 0 : 0), (0 : 0 : 0 : 1)〉, and
m5 = 〈(1 : 0 : 0 : 0), (0 : 0 : 1 : 0)〉.

It can be easily verified that `1 and `2 are skew, as are m4 and m5.
From here, we will label points

P3,5 = (1 : 0 : α : 0) and
P1,3 = (1 : 0 : 0 : β ),

which can be seen to force

P3,4 = (0 : 1 : 0 :−α
−1) and

P2,3 = (0 : 1 : β
−1 : 0), so

`3 = 〈(1 : 0 : α : 0), (0 : 1 : 0 :−α
−1)〉 and

m3 = 〈(1 : 0 : 0 : β ), (0 : 1 : β
−1 : 0)〉.

It can be verified that `3 and m3 will be skew so long as q is odd.
Next, we will label the point

P1,2 = (1 : 0 : 0 : γ),

where γ is nonzero and γ 6= β , which forces us to have

P3,2 = (1 : αγ : α :−γ) and
m2 = 〈(1 : 0 : 0 : γ), (1 : αγ : α :−γ)〉.

At this point we should remark that in order for `2 and m2 to not be concurrent, we
must have 2 6= 0, showing again that q must be odd.

We will next coordinatize `4. We may arbitrarily label

P4,5 = (1 : 0 : δ : 0),

4



requiring only that δ 6= 0 and δ 6= α . This can be seen to force

P4,3 = (1 :−βδ :−δ : β ) and

P4,2 = (2−αδ
−1 : αγ : α :−αγδ

−1)

to be the unique points on m3 and m2 collinear with P4,5. However, since we must have
these two points collinear with each other as well, we must have δ = α(1−β−1γ).

We would like to compile the coordinates we have determined thus far, as these will
completely determine the coordinates for the rest of the points in our configuration.

On `1:

P1,5 = (1 : 0 : 0 : 0)
P1,4 = (0 : 0 : 0 : 1)
P1,3 = (1 : 0 : 0 : β )

P1,2 = (1 : 0 : 0 : γ)

On `2:

P2,5 = (0 : 0 : 1 : 0)
P2,4 = (0 : 1 : 0 : 0)

P2,3 = (0 : 1 : β
−1 : 0)

On `3:

P3,5 = (1 : 0 : α : 0)

P3,4 = (0 : 1 : 0 :−α
−1)

P3,2 = (1 : αγ : α :−γ)

On `4:

P4,5 = (1 : 0 : α(1−β
−1

γ) : 0)

P4,3 = (1 :−αβ (1−β
−1

γ) :−α(1−β
−1

γ) : β )

P4,2 = (1−2β
−1

γ : αγ(1−β
−1

γ) : α(1−β
−1

γ) :−γ).

None of the coordinates for points on `5 and m1 have yet been determined, and the only
requirement we have imposed on our field up to this point is that 2 6≡ 0.

The next line to tackle will be m1. The line m1 intersects (of the lines we have
constructed thus far) `2, `3, and `4. We will first label

P2,1 = (0 : 1 : h : 0),

where h is nonzero, and h 6= β−1. This gives

P3,1 = (1 :−αh−1 : α : h−1)
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as the unique point on `3 collinear with P2,1, and

P4,1 = (βh :−αβ (1−β
−1

γ) : α(βh−2)(1−β
−1

γ) : β )

as the unique point on `4 collinear with P2,1. For these two points to also be collinear,
we must have

2αγh+2α−2αβ
−1

γ = 0.

Since 2 6≡ 0 we can deduce that γh = β−1γ−1, and so h = β−1− γ−1.
At this point we have the freedom to label these three points on m1 in terms of α ,

β and γ , and we will do so. We have:

P2,1 = (0 : 1 : β
−1− γ

−1 : 0)

P3,1 = (β−1− γ
−1 :−α : α(β−1− γ

−1) : 1)

P4,1 = (β (β−1− γ
−1) :−αβ (1−β

−1
γ) : α(β (β−1− γ

−1)−2)(1−β
−1

γ) : β )

≡ (β−1− γ
−1 :−α(1−β

−1
γ) : α(β−2

γ− γ
−1) : 1).

At this point we know the coordinates of all points on `1, `2, `3 and `4 in terms of the
arbitrary nonzero field elements α , β and γ in Fq, q odd.

Note: Before proceeding we notice that D4 = (`1, `2, `3, `4;m1,m2,m3,m4) is a
double four for all odd prime powers q. Hence by Lemma 2.2 we see that for each
prime power q there is a double four in W(q).

Now `5 is the last line we need, and is a transversal of mi for i 6= 5. Let us take take
a point P5,4 = (0 : 1 : 0 : δ ) on m4. We see that

P5,3 = (1 :−βδ
−1 :−δ

−1 : β )≡ (δ :−β :−1 : βδ )

P5,2 = (−αδ : αγ : α :−γ(2+αδ ))

P5,1 = (β−1− γ
−1 :−2α−δ

−1 :−δ
−1(β−1− γ

−1) : 1)

are the unique points collinear with P5,4 on m3, m2, and m1, respectively. Requiring
P5,2 and P5,3 to be collinear means we must have

2αβδ −2αγδ −2γ = 0,

therefore δ = α−1γ

β−γ
. But we also need P5,1 and P5,3 to be collinear, so we require

2βγ
−1 +2αδ = 0

as well. Thus we must have δ =−α−1βγ−1.
So in order for us to have a double five we have imposed two different conditions

on δ , we need δ = α−1γ

β−γ
as well as δ = −α−1βγ−1. For these both to hold we must

have

α−1γ

β − γ
=−α

−1
βγ
−1,
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which is equivalent to

β
2
γ
−2−βγ

−1 +1 = 0.

Conveniently, we may consider this a quadratic polynomial in the variable βγ−1 with
coefficients in the prime base field. This allows us to compute the discriminant of this
polynomial, which is −3. Thus this polynomial has exactly one distinct root if q ≡ 0
mod 3, and two distinct roots if −3 is a nonzero square in the field of order q. Using
the Law of Quadratic Reciprocity it is straightforward to determine that the quadratic
equation will have a solution if and only if q is congruent to 0 or 1 mod 3. Since q
must be odd, this is equivalent to having q congruent to 1 or 3 mod 6, as claimed in the
theorem.

(0 : 1 : β− 1 : 0)

(1 : − αβλ : α : βλ )

(1 : αβλ : α (1 + λ ) : βλ )

(1 : − αβ (1 + λ ) : αλ : βλ )

(1 : 0 : 0 : βλ )

(1 : αβλ : α : − βλ )

(1 + λ : − αβλ : αλ : β)

(1 : − αβλ : αλ : β(1 + λ ))

(1 : 0 : 0 : β)

(0 : 1 : β− 1 : 0)

(1 : − αβλ : − αλ : β)

(1 : − αβλ : − αλ : β)

(0 : 0 : 0 : 1)

(0 : 1 : 0 : 0)

(0 : 1 : 0 : − α− 1 )

(0 : 1 : 0 : − α− 1λ )

(1 : 0 : 0 : 0)

(0 : 0 : 1 : 0)

(1 : 0 : α : 0)

(1 : 0 : αλ : 0)

Figure 1: Coordinates for a double five; α and β are arbitrary (nonzero) field elements,
and λ , λ are the two roots of x2− x+1.

We should now remark that, in the situations where a double five exists, we can
write λ = βγ−1 as a chosen root of x2− x+ 1, which allows us to replace γ = βλ−1

and δ =−α−1βγ−1 =−α−1λ . This allows us to coordinatize the points of our double
five as shown in Fig. 1.
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