Preprints
[23] G. Debruyne, A general quantified Ingham-Karamata Tauberian theorem, [Preprint]
[22] G. Debruyne, The prime number theorem through one-sided Tauberian theorems, [Preprint]
Published/Accepted Articles
[21] F. Broucke, G. Debruyne, S. Révész, Some examples of well-behaved Beurling number systems, Trans. Amer. Math. Soc., [Preprint]
[20] B. Chen, G. Debruyne, J. Vindas, On the density hypothesis associated to L-functions of holomorphic cusp forms, Rev. Math. Iberoam., [Article|Preprint]
[19] F. Broucke, G. Debruyne, J. Vindas, The optimal Malliavin-type remainder for Beurling generalized integers, J. Inst. Math. Jussieu 23 (2024), 249-278 [Article|Preprint]
[18] F. Broucke, G. Debruyne, On zero-density estimates and the PNT in short intervals for Beurling generalized numbers, Acta Arith. 207 (2023), 365-391 [Article|Preprint]
[17] F. Broucke, G. Debruyne, J. Vindas, On the absence of remainders in the Ingham-Karamata and Wiener-Ikehara theorems: a constructive approach, Proc. Amer. Math. Soc. 149 (2021), 1053-1060 [Article|Preprint]
[16] G. Debruyne, Beurling numbers whose number of prime factors lies in a specified residue class, Acta Arith. 196 (2020), 433-438 [Article|Preprint]
[15] F. Broucke, G. Debruyne, J. Vindas, An asymptotic analysis of the Fourier-Laplace transforms of certain oscillatory functions, J. Anal. Math. Appl. (2020), 124450 [Article|Preprint]
[14] G. Debruyne, G. Tenenbaum, The saddle-point method for general partition functions, Indag. Math. (N.S.) 31 (2020), 728-738 [Article|Preprint]
[13] F. Broucke, G. Debruyne, J. Vindas, Beurling integers with RH and large oscillation, Adv. Math. 370 (2020), 107240 [Article|Preprint]
[12] G. Debruyne, F. Maes, J. Vindas, Halász's theorem for Beurling generalized numbers, Acta Arith. 194 (2020), 59-72. [Article|Preprint]
[11] G. Debruyne, D. Seifert, Optimality of the quantified Ingham-Karamata theorem for operator semigroups with general resolvent growth, Arch. Math. (Basel) 113 (2019), 617-627. [Article|Preprint]
[10] G. Debruyne, D. Seifert, An abstract approach to optimal decay of functions and operator semigroups, Israel J. Math. 233 (2019), 439-451. [Article|Preprint]
[9] G. Debruyne, J. Vindas, Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior, J. Anal. Math. 138 (2019), 799-833. [Article|Preprint]
[8] G. Debruyne, J. Vindas, On Diamond's L^1 criterion for asymptotic density of Beurling generalized integers, Michigan Math. J. 68 (2019), 211-223. [Article|Preprint]
[7] G. Debruyne, J. Vindas, Note on the absence of remainders in the Wiener-Ikehara theorem, Proc. Amer. Math. Soc. 146 (2018), 5097-5103. [Article|Preprint]
[6] G. Debruyne, J. Vindas, Optimal Tauberian constant in Ingham's theorem for Laplace transforms, Israel J. Math. 228 (2018), 557-586. [Article|Preprint]
[5] G. Debruyne, H.G. Diamond, J. Vindas, M(x)=o(x) Estimates for Beurling numbers, J. Théor. Nombres Bordeaux 30 (2018), 469-483. [Article|Preprint]
[4] G. Debruyne, J. Vindas, On PNT equivalences for Beurling numbers, Monatsh. Math. 184 (2017), 401-424. [Article|Preprint]
[3] G. Debruyne, J. Vindas, On general prime number theorems with remainder, in: Generalized Functions and Fourier Analysis, pp. 79-94. Oper. Theory Adv. Appl., Vol. 260, Springer, 2017. [Article|Preprint]
[2] G. Debruyne, J. Vindas, Generalization of the Wiener-Ikehara theorem, Illinois J. Math. 60 (2016), 613-624. [Article|Preprint]
[1] G. Debruyne, J.-C. Schlage-Puchta, J. Vindas, Some examples in the theory of Beurling's generalized prime numbers, Acta Arith. 176 (2016), 101-129. [Article|Preprint]
Ph.D ThesisG. Debruyne, Complex Tauberian theorems and applications to Beurling generalized primes, Dissertation, Ghent University, Ghent, Belgium, 2018 [pdf]